Potential Analysis

, Volume 43, Issue 2, pp 241–267 | Cite as

Mosco Type Convergence of Bilinear Forms and Weak Convergence of n-Particle Systems



It is well known that Mosco (type) convergence is a tool in order to verify weak convergence of finite dimensional distributions of sequences of stochastic processes. In the present paper we are concerned with the concept of Mosco type convergence for non-symmetric stochastic processes and, in particular, n-particle systems in order to establish relative compactness.


Mosco type convergence Weak convergence n-particle systems 

Mathematics Subject Classifications (2010)

47D07 60K35 60J35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conrad, F., Grothaus, M., Lierl, J., Wittich, O.: Convergence of Brownian motion with a scaled Dirac delta potential. Proc. Edinb. Math. Soc. (Series 2) 55(2), 403–427 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ethier, S.N., Kurtz, T.: Markov processes, characterization and convergence. John Wiley, New York Chichester Brisbane Toronto Singapore (1986)Google Scholar
  3. 3.
    Grothaus, M., Kondratiev, Y.G., Röckner M.: N/V-limit for stochastic dynamics in continuous particle systems. Probab. Theory Relat. Fields 137(1–2), 121–160 (2007)MATHGoogle Scholar
  4. 4.
    Hino, M.: Convergence of non-symmetric forms. J. Math. Kyoto Univ. 38(2), 329–341 (1998)MathSciNetMATHGoogle Scholar
  5. 5.
    Hinz, M.: Approximation of jump processes on fractals. Osaka J. Math. 46(1), 141–171 (2009)MathSciNetMATHGoogle Scholar
  6. 6.
    Kim, P.: Weak convergence of censored and reflected stable processes. Stoch. Process. Appl. 116(12), 1792–1814 (2006)CrossRefMATHGoogle Scholar
  7. 7.
    Kolesnikov, A.V.: Convergence of dirichlet forms with changing speed measures on ℝd. Forum Math. 17(2), 225–259 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kolesnikov, A.V.: Mosco convergence of Dirichlet forms in infinite dimensions with changing reference measures. J. Funct. Anal. 230(2), 382–418 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kolesnikov, A.V.: Weak convergence of diffusion processes on Wiener space. Probab. Theory Relat. Fields 140(1–2), 1–17 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Kuwae, K., Uemura, T.: Weak convergence of symmetric diffusion processes. Probab. Theory Relat. Fields 109(2), 159–182 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kuwae, K., Uemura, T.: Weak Convergence of symmetric diffusion processes II. Probability theory and mathematical statistics (Tokyo, 1995), pp 266–275. World Sci. Publ., River Edge (1996)Google Scholar
  12. 12.
    Kuwae, K., Shioya, T.: Convergence of spectral structures: a functional analytic theory and its applcations to spectral geometry. Comm. Anal. Geom. 11(4), 599–673 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Löbus, J.-U.: A stationary Fleming-Viot type Brownian particle system. Math. Z. 263(3), 541–581 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Löbus, J.-U.: Weak convergence of n-particle systems using bilinear forms. Milan J. Math. 81(1), 37–77 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Löbus, J.-U.: Mosco type convergence and weak convergence for a Fleming-Viot type particle system, Preprint. arXiv:1311.0204 [math.PR] (2014)
  16. 16.
    Mandelkern, M.: Metrization of the one-point compactification. Proc. Amer. Math. Soc. 107(4), 1111–1115 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  18. 18.
    Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123(2), 368–421 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefMATHGoogle Scholar
  20. 20.
    Pugachev, O.V.: On the closability and convergence of Dirichlet forms. Proc. Steklov Inst. Math. 270, 216–221 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sun, W.: Weak convergence of Dirichlet processes. Sci. China Ser. A 41(1), 8–21 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Stannat, W.: The theory of generalized Dirichlet forms and its applications in analysis and stochastics. Mem. Amer. Math. Soc. 678, 142 (1999)MathSciNetGoogle Scholar
  23. 23.
    Tölle, J.M.: Convergence of non-symmetric forms with changing reference measures. Diploma thesis, Faculty of Mathematics, University of Bielefeld (2006)Google Scholar
  24. 24.
    Yosida, K.: Functional Analysis. Springer, Berlin Heidelberg New York (1980)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Matematiska InstitutionenLinköpings UniversitetLinköpingSweden

Personalised recommendations