Skip to main content
Log in

Fock-Sobolev Spaces of Fractional Order

  • Published:
Potential Analysis Aims and scope Submit manuscript


For the full range of index \(0<p\le \infty \), real weight α and real Sobolev order s, two types of weighted Fock-Sobolev spaces over \(\mathbb C^{n}\), \(F^{p}_{\alpha , s}\) and \(\widetilde F^{p}_{\alpha ,s}\), are introduced through fractional differentiation and through fractional integration, respectively. We show that they are the same with equivalent norms and, furthermore, that they are identified with the weighted Fock space \(F^{p}_{\alpha -sp,0}\) for the full range of parameters. So, the study on the weighted Fock-Sobolev spaces is reduced to that on the weighted Fock spaces. We describe explicitly the reproducing kernels for the weighted Fock spaces and then establish the boundedness of integral operators induced by the reproducing kernels. We also identify dual spaces, obtain complex interpolation result and characterize Carleson measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Adams, R.A., 2nd ed.: Sobolev spaces. Academic Press, London (2003)

    MATH  Google Scholar 

  2. Beatrous, F., Burbea, J.: Holomorphic Sobolev spaces on the ball, Dissertationes Math. (Rozprawy Mat.) 276, 1–57 (1989)

    MathSciNet  Google Scholar 

  3. Benenet, C., Sharpley, R.: Interpolation of operators. Academic Press, London (1988)

    Google Scholar 

  4. Bongioanni, B., Torrea, J.L.: Sobolev spaces associated to the harmonic oscillator. Proc. Indian Acad. Sci. Math. Sci. 116, 337–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho, H.R., Choe, B.R., Koo, H.: Linear combinations of composition operators on the Fock-Sobolev spaces. Potential Anal. 41, 1223–1246 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cho, H.R., Zhu, K.: Fock-Sobolev spaces and their Carleson measures. J. Funct. Anal. 263, 2483–2506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Driver, K.B.: On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall isomorphisms. J. Funct. Anal. 133, 69–128 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gross, L., Malliavin, P.: Hall’s transform and the Segal-Bargmann map, Itô’s stochastic calculus and probability theory, pp 73–116. Springer, Tokyo (1996)

    Book  Google Scholar 

  9. Gundy, R.: Sur les de Riesz transformations pour le semi-groupe d’Ornstein-Uhlenbeck. C. R. Acad. Sci. Paris Sér. I Math. 303, 967–970 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Gutiérrez, C.E.: On the Riesz transforms for Gaussian measures. J. Funct. Anal. 120, 107–134 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gutiérrez, C.E., Segovia, C., Torrea, J.: On higher Riesz transforms for Gaussian measures. J. Fourier Anal. Appl. 2, 583–596 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brian, C.: Hall and Wicharn Lewkeeratiyutkul, Holomorphic Sobolev spaces and the generalized Segal-Bargmann transform. J. Funct. Anal 217, 192–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meyer, P.-A.: Transformations de Riesz pour les lois gaussiennes, Seminar on probability, XVIII, 179–193, Lecture Notes in Math. Springer, Berlin, 1984 (1059)

  14. Muckenhoupt, B.: Hermite conjugate expansions. Trans. Amer. Math. Soc 139, 243–260 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pérez, S.: Boundedness of Littlewood-Paley g-functions of higher order associated with the Ornstein-Uhlenbeck semigroup. Indiana Univ. Math. J. 50, 1003–1014 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pérez, S., Soria, F.: Operators associated with the Ornstein-Uhlenbeck semigroup. J. London Math. Soc. 61, 857–871 (2000)

    Article  MathSciNet  Google Scholar 

  17. Pisier, G.: Riesz transforms: a simpler analytic proof of P. -A. Meyer’s inequality, Sèminaire de Probabilitès, XXII, 485–501 Lecture Notes in Math., vol. 1321. Springer, Berlin (1988)

    Google Scholar 

  18. Rudin, W.: Function theory in the unit ball of C n. Springer-Verlag, New York (1980)

    Book  Google Scholar 

  19. Thangavelu, S.: Holomorphic Sobolev spaces associated to compact symmetric spaces. J. Funct. Anal. 251, 438–462 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tung, Y.: Fock Spaces. University of Michigan, Ph.D. dissertation (2005)

    Google Scholar 

  21. Urbina, W.: On singular integrals with respect to the Gaussian measure. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17, 531–567 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Zhu, K.: Spaces of holomorphic functions in the unit ball. Springer, New York (2005)

    MATH  Google Scholar 

  23. Zhu, K.: Operator theory in function spaces, 2nd ed., Amer. Math Soc. (2007)

  24. Zhu, K.: Analysis on Fock Spaces. Springer, New York (2012)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Boo Rim Choe.

Additional information

H. Cho was supported by NRF of Korea(2014R1A1A2056828) and B. Choe was supported by NRF of Korea(2013R1A1A2004736). Also, H. Koo was supported by NRF of Korea(2012R1A1A2000705) and NSFC(11271293).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H.R., Choe, B.R. & Koo, H. Fock-Sobolev Spaces of Fractional Order. Potential Anal 43, 199–240 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification (2010)