Abstract
We study curvature dimension inequalities for the sub-Laplacian on contact Riemannian manifolds. This new curvature dimension condition is then used to obtain:
-
Geometric conditions ensuring the compactness of the underlying manifold (Bonnet–Myers type results);
-
Volume estimates of metric balls;
-
Gradient bounds and stochastic completeness for the heat semigroup generated by the sub-Laplacian;
-
Spectral gap estimates.
Similar content being viewed by others
References
Agrachev, A., Lee, P.: Generalized Ricci curvature bounds on three dimensional contact sub-Riemannian manifold. arXiv:0903.2550 (2009). Accessed 5 Jun 2011
Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. arXiv:1101.3590v4. Accessed 9 Apr 2012
Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Ecole d’Eté de Probabilites de St-Flour, Lecture Notes in Math (1994)
Bakry, D., Émery, M.: Diffusions hypercontractives. Sémin. de probabilités XIX, Univ. Strasbourg, Springer (1983)
Barletta, E.: The Lichnerowicz theorem on CR manifolds. Tsukuba J. Math. 31(1), 77–97 (2007)
Barletta, E., Dragomir, S.: Differential equations on contact Riemannian manifolds. Ann. Scuola Norm. Sup. XXX, 63–95 (2001)
Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262(6), 2646–2676 (2012)
Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. arXiv:1007.1600 (2011). Accessed 3 Mar 2011
Baudoin, F., Kim, B.: Sobolev, Poincaré and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality. Rev. Mat. Iberoam. arXiv:1203.3789 (2013, to appear). Accessed 16 Mar 2012
Baudoin, F., Wang, J.: The Subelliptic Heat Kernel on the CR sphere. Math. Zeit. (2012). doi:10.1007/s00209-012-1127-4
Blair, D.: Riemannian geometry of contact and symplectic manifolds. In: Progress in Mathematics, vol. 203. Birkhauser, Boston, MA, xii+260. ISBN: 0-8176-4261-7 (2002)
Cao, H.D., Yau, S.T.: Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Z. 211, 485–504 (1992)
Chang, S.C., Chiu, H.L.: On the CR analogue of Obata’s theorem in a pseudohermitian 3-manifold. Math. Ann. 345(1), 33–51 (2009)
Chiu, H.L.: The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian 3-manifold. Ann. Glob. Anal. Geom. 30(1), 81–96 (2006)
Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vols. I and II (Chicago, Ill., 1981), pp. 590–606. Wadsworth Math. Ser., Wadsworth, Belmont, CA (1983)
Greenleaf, A.: The first eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold. Commun. Partial Differ. Equ. 10(2), 191–217 (1985)
Hladky, R.: Connections and Curvature in sub-Riemannian geometry. Houston J. Math. arXiv:0912.3535 (2013, to appear). Accessed 12 Apr 2011
Ivanov, S., Vassilev, D.: An Obata type result for the first eigenvalue of the sub-Laplacian on a CR manifold with a divergence-free torsion. J. Geom. 103(3), 475–504 (2012)
Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53(2), 503–523 (1986)
Jerison, D., Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35(4), 835–854 (1986)
Kusuoka, S.: Malliavin calculus revisited. J. Math. Sci. Univ. Tokyo 10, 261–277 (2003)
Li, P.: Uniqueness of L 1 solutions for the Laplace equation and the heat equation on Riemannian manifolds, J. Differ. Geom. 20(2), 447–457 (1984)
Li, S.Y., Luk, H.S.: The sharp lower bound for the first positive eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold. Proc. Am. Math. Soc. 132(3), 789–798 (2004)
Li, C., Zelenko, I.: Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries. J. Geom. Phys. 61, 781–807 (2011)
Rumin, M.: Formes différentielles sur les variétés de contact (French). (Differential forms on contact manifolds.) J. Differ. Geom. 39(2), 281–330 (1994)
Saloff-Coste, L.: A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Not. 2(2), 27–38 (1992)
Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78(1), 143–160 (1984)
Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79, (1983)
Strichartz, R.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)
Strichartz, R.: Correction to: sub-Riemannian geometry (J. Differ. Geom. 24, 221–263 (1986)). J. Differ. Geom. 30(2), 595–596 (1989)
Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)
Tanno, S.: Variation problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314(1), 349–379 (1989)
Wang, F.Y.: Generalized curvature condition for subelliptic diffusion processes (2011). arXiv:1202.0778. Accessed 12 Mar 2012
Wang, J.: The subelliptic heat kernel on the CR hyperbolic spaces. (2012, submitted). arXiv:1204.3642. Accessed 16 Apr 2012
Author information
Authors and Affiliations
Corresponding author
Additional information
First author was supported in part by NSF Grant DMS 0907326.
Rights and permissions
About this article
Cite this article
Baudoin, F., Wang, J. Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds. Potential Anal 40, 163–193 (2014). https://doi.org/10.1007/s11118-013-9345-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11118-013-9345-x
Keywords
- Curvature dimension inequality
- Γ2 calculus
- Contact manifold
- Bochner’s formula
- Gradient bounds for the heat semigroup