Skip to main content
Log in

Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We study curvature dimension inequalities for the sub-Laplacian on contact Riemannian manifolds. This new curvature dimension condition is then used to obtain:

  • Geometric conditions ensuring the compactness of the underlying manifold (Bonnet–Myers type results);

  • Volume estimates of metric balls;

  • Gradient bounds and stochastic completeness for the heat semigroup generated by the sub-Laplacian;

  • Spectral gap estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Lee, P.: Generalized Ricci curvature bounds on three dimensional contact sub-Riemannian manifold. arXiv:0903.2550 (2009). Accessed 5 Jun 2011

  2. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. arXiv:1101.3590v4. Accessed 9 Apr 2012

  3. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Ecole d’Eté de Probabilites de St-Flour, Lecture Notes in Math (1994)

  4. Bakry, D., Émery, M.: Diffusions hypercontractives. Sémin. de probabilités XIX, Univ. Strasbourg, Springer (1983)

  5. Barletta, E.: The Lichnerowicz theorem on CR manifolds. Tsukuba J. Math. 31(1), 77–97 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Barletta, E., Dragomir, S.: Differential equations on contact Riemannian manifolds. Ann. Scuola Norm. Sup. XXX, 63–95 (2001)

    MathSciNet  Google Scholar 

  7. Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262(6), 2646–2676 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. arXiv:1007.1600 (2011). Accessed 3 Mar 2011

  9. Baudoin, F., Kim, B.: Sobolev, Poincaré and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality. Rev. Mat. Iberoam. arXiv:1203.3789 (2013, to appear). Accessed 16 Mar 2012

  10. Baudoin, F., Wang, J.: The Subelliptic Heat Kernel on the CR sphere. Math. Zeit. (2012). doi:10.1007/s00209-012-1127-4

    Google Scholar 

  11. Blair, D.: Riemannian geometry of contact and symplectic manifolds. In: Progress in Mathematics, vol. 203. Birkhauser, Boston, MA, xii+260. ISBN: 0-8176-4261-7 (2002)

  12. Cao, H.D., Yau, S.T.: Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Z. 211, 485–504 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chang, S.C., Chiu, H.L.: On the CR analogue of Obata’s theorem in a pseudohermitian 3-manifold. Math. Ann. 345(1), 33–51 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chiu, H.L.: The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian 3-manifold. Ann. Glob. Anal. Geom. 30(1), 81–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vols. I and II (Chicago, Ill., 1981), pp. 590–606. Wadsworth Math. Ser., Wadsworth, Belmont, CA (1983)

  16. Greenleaf, A.: The first eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold. Commun. Partial Differ. Equ. 10(2), 191–217 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hladky, R.: Connections and Curvature in sub-Riemannian geometry. Houston J. Math. arXiv:0912.3535 (2013, to appear). Accessed 12 Apr 2011

  18. Ivanov, S., Vassilev, D.: An Obata type result for the first eigenvalue of the sub-Laplacian on a CR manifold with a divergence-free torsion. J. Geom. 103(3), 475–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53(2), 503–523 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jerison, D., Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35(4), 835–854 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kusuoka, S.: Malliavin calculus revisited. J. Math. Sci. Univ. Tokyo 10, 261–277 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Li, P.: Uniqueness of L 1 solutions for the Laplace equation and the heat equation on Riemannian manifolds, J. Differ. Geom. 20(2), 447–457 (1984)

    MATH  Google Scholar 

  23. Li, S.Y., Luk, H.S.: The sharp lower bound for the first positive eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold. Proc. Am. Math. Soc. 132(3), 789–798 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, C., Zelenko, I.: Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries. J. Geom. Phys. 61, 781–807 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rumin, M.: Formes différentielles sur les variétés de contact (French). (Differential forms on contact manifolds.) J. Differ. Geom. 39(2), 281–330 (1994)

    Google Scholar 

  26. Saloff-Coste, L.: A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Not. 2(2), 27–38 (1992)

    Article  MathSciNet  Google Scholar 

  27. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78(1), 143–160 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79, (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Strichartz, R.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)

    MATH  MathSciNet  Google Scholar 

  30. Strichartz, R.: Correction to: sub-Riemannian geometry (J. Differ. Geom. 24, 221–263 (1986)). J. Differ. Geom. 30(2), 595–596 (1989)

  31. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MATH  MathSciNet  Google Scholar 

  32. Tanno, S.: Variation problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314(1), 349–379 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, F.Y.: Generalized curvature condition for subelliptic diffusion processes (2011). arXiv:1202.0778. Accessed 12 Mar 2012

  34. Wang, J.: The subelliptic heat kernel on the CR hyperbolic spaces. (2012, submitted). arXiv:1204.3642. Accessed 16 Apr 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Baudoin.

Additional information

First author was supported in part by NSF Grant DMS 0907326.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudoin, F., Wang, J. Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds. Potential Anal 40, 163–193 (2014). https://doi.org/10.1007/s11118-013-9345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-013-9345-x

Keywords

Mathematics Subject Classifications (2010)

Navigation