Skip to main content
Log in

Approximation of the Invariant Measure with an Euler Scheme for Stochastic PDEs Driven by Space-Time White Noise

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing—with exponential convergence to equilibrium. Considering test functions of class \(\mathcal{C}^2\), bounded and with bounded derivatives, we prove that we can approximate this invariant measure using the numerical scheme, with order 1/2 with respect to the time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Brémaud, P.: Markov chains. Gibbs fields, Monte Carlo simulation, and queues. Texts in Applied Mathematics, vol. xviii, p. 444. Springer, New York, NY (1999)

    Google Scholar 

  2. Brézis, H.: Functional analysis. Theory and applications. (Analyse fonctionnelle. Théorie et applications.). Collection Mathématiques Appliquées pour la Maîtrise, p. 248. Masson, Paris (1994)

  3. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44, xviii, p. 454. Cambridge etc., Cambridge University Press (1992)

  4. Da Prato, G., Zabczyk, J.: Ergodicity for infinite dimensional systems. London Mathematical Society Lecture Note Series, 229, xi, p. 339. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  5. Davie, A.M., Gaines, J.G.: Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comput. 70(233), 121–134 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comput. 80(273), 89–117 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Debussche, A., Hu, Y., Tessitore, G.: Ergodic BSDEs under weak dissipative assumptions. Stoch. Process. Their Appl. 121(3), 407–426 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Debussche, A., Printems, J.: Weak order for the discretization of the stochastic heat equation. Math. Comput. 78(266), 845–863 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Doeblin, W.: Expose de la théorie des chaînes simples constantes de Markoff à un nombre fini d’etats. Rev. Math. Union Interbalkan. 2, 77–105 (1938)

    Google Scholar 

  10. Gyongy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9(1), 1–25 (1998)

    Article  MathSciNet  Google Scholar 

  11. Gyongy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11(1), 1–37 (1999)

    Article  MathSciNet  Google Scholar 

  12. Gyongy, I., Nualart, D.: Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7(4), 725–757 (1997)

    Article  MathSciNet  Google Scholar 

  13. Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal. 18(2), 141–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Applications of Mathematics, vol. 23, xxxv, p. 632. Springer, Berlin (1992)

    Book  Google Scholar 

  15. Kuksin, S., Shirikyan, A.: A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys. 221(2), 351–366 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lindvall, E.T.: Lectures on the coupling method. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics, p. 272. Wiley, New York, NY (1992)

    Google Scholar 

  17. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Their Appl. 101(2), 185–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mattingly, J.C.: Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230(3), 421–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mattingly, J.C., Stuart, A.M., Tretyakov, M.V.: Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48(2), 552–577 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meyn, S., Tweedie, R.L.: Markov chains and stochastic stability. In: Glynn, P.W. (ed.) Cambridge Mathematical Library, 2nd edn., vol. xviii, p. 594. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  21. Milstein, G.N.: Numerical integration of stochastic differential equations. Transl. from the Russian. Mathematics and its Applications (Dordrecht), vol. 313, vii, p. 169. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  22. Milstein, G.N., Tretyakov, M.V.: Stochastic numerics for mathematical physics. Scientific Computation, vol. ixx, p. 594. Springer, Berlin (2004)

    Book  Google Scholar 

  23. Mueller, C.: Coupling and invariant measures for the heat equation with noise. Ann. Probab. 21(4), 2189–2199 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Probability and Its Applications, vol. xiv, p. 382. Springer, Berlin (2006)

    Google Scholar 

  25. Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. Monte Carlo Methods Appl. 7(3–4), 359–368 (2001)

    MATH  MathSciNet  Google Scholar 

  26. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3, x, p. 547. de Gruyter, Berlin (1996)

    Book  Google Scholar 

  27. Sanz-Solé, M.: Malliavin calculus with applications to stochastic partial differential equations. Fundamental Sciences: Mathematics, vol. viii, p. 162. CRC Press, Lausanne: EPFL Press, Boca Raton, FL (2005)

    Book  Google Scholar 

  28. Talay, D.: Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution. Discretization of a stochastic differential equation and computation of expectations of functions of the solution (1986)

  29. Talay, D.: Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics Stochastics Rep. 29(1), 13–36 (1990)

    Article  MATH  Google Scholar 

  30. Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8(4), 483–509 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Walsh, J.B.: Finite element methods for parabolic stochastic PDE’s. Potential Anal. 23(1), 1–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Edouard Bréhier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bréhier, CE. Approximation of the Invariant Measure with an Euler Scheme for Stochastic PDEs Driven by Space-Time White Noise. Potential Anal 40, 1–40 (2014). https://doi.org/10.1007/s11118-013-9338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-013-9338-9

Keywords

Mathematics Subject Classifications (2010)

Navigation