Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Potential Analysis
  3. Article
Gradient Estimates of q-Harmonic Functions of Fractional Schrödinger Operator
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Gradient Estimates for the Commutator with Fractional Differentiation for Second Order Elliptic Perators

10 July 2019

Wenyu Tao, Yanping Chen & Jili Li

$$L^p$$Lp estimates for Riesz transforms associated to Schrödinger operators with discontinuous coefficients

23 April 2019

Lin Tang & Guoming Zhang

Gradient Estimates in Fractional Dirichlet Problems

28 March 2020

Mouhamed Moustapha Fall & Sven Jarohs

Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents

22 December 2022

Minh-Phuong Tran, Thanh-Nhan Nguyen, … Thi-Thanh-Truc Dang

Weighted estimates for operators of fractional integration of variable order in generalized variable Hölder spaces

09 May 2022

Alexey Karapetyants & Evelyn Morales

Estimates for the Riesz transforms associated with Schrödinger type operators

04 August 2022

Yanhui Wang

Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via T1 theorem

06 September 2021

Zhiyong Wang, Pengtao Li & Chao Zhang

Estimates for operators on generalized weighted Orlicz-Morrey spaces and their applications to non-divergence elliptic equations

20 April 2022

V. S. Guliyev & M. N. Omarova

Weighted Lorentz Gradient Estimates for a Class of Quasilinear Elliptic Equations with Measure Data

16 June 2020

Fengping Yao

Download PDF
  • Open Access
  • Published: 09 November 2012

Gradient Estimates of q-Harmonic Functions of Fractional Schrödinger Operator

  • Tadeusz Kulczycki1 

Potential Analysis volume 39, pages 69–98 (2013)Cite this article

  • 675 Accesses

  • 13 Citations

  • Metrics details

Abstract

We study gradient estimates of q-harmonic functions u of the fractional Schrödinger operator Δα/2 + q, α ∈ (0, 1] in bounded domains D ⊂ ℝd. For nonnegative u we show that if q is Hölder continuous of order η > 1 − α then \(\nabla u(x)\) exists for any x ∈ D and \(|\nabla u(x)| \le c u(x)/ ({\rm dist}(x,\partial D) \wedge 1)\). The exponent 1 − α is critical i.e. when q is only 1 − α Hölder continuous \(\nabla u(x)\) may not exist. The above gradient estimates are well known for α ∈ (1, 2] under the assumption that q belongs to the Kato class \(\mathcal{J}^{\alpha - 1}\). The case α ∈ (0, 1] is different. To obtain results for α ∈ (0, 1] we use probabilistic methods. As a corollary, we obtain for α ∈ (0, 1) that a weak solution of Δα/2 u + q u = 0 is in fact a strong solution.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bañuelos, R., Kulczycki, T.: The Cauchy process and the Steklov problem. J. Funct. Anal. 211(2), 355–423 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banũelos, R., Pang, M.H.: Lower bound gradient estimates for solutions of Schrödinger equations and heat kernels. Commun. Partial Differ. Equ. 24, 499–543 (1999)

    Article  MATH  Google Scholar 

  3. Bañuelos, R., Kulczycki, Méndez-Hernández, P.J.: On the shape of the ground state eigenfunction for stable processes. Potential Anal. 24, 205–221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bañuelos, R., Kulczycki, T., Siudeja, B.: On the trace of symmetric stable processes on Lipschitz domains. J. Funct. Anal. 257, 3329–3352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumenthal, R.M., Getoor, R.K.: Markov processes and their potential theory. In: Pure Appl. Math. Academic Press, New York (1968)

    Google Scholar 

  6. Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99, 540–554 (1961)

    MathSciNet  MATH  Google Scholar 

  7. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraček, Z.: Potential analysis of stable processes and its extensions. In: Lecture Notes in Mathematics, vol. 1980, Springer, Berlin (2009)

    Google Scholar 

  8. Bogdan, K., Byczkowski, T.: Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domain. Stud. Math. 133, 53–92 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Stat. 20, 293–335 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Bogdan, K., Byczkowski, T., Nowak, A.: Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes. Ill. J. Math. 46, 541–556 (2002)

    MATH  Google Scholar 

  11. Böttcher, B., Schilling, R., Wang, J.: Constructions of coupling processes for Lévy processes. Stoch. Process. Their Appl. 121, 1201–1216 (2011)

    Article  MATH  Google Scholar 

  12. Chen, Z.-Q., Song, R.: Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150, 204–239 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z.-Q., Kim, P., Song, R.: Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab. 40, 213–244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, 90–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  16. Cranston, M., Zhao, Z.: Some regularity results and eigenfunction estimates for the Schrödinger operator. In: Diffusion Processes and Related Problems in Analysis, I (Evanston, IL, 1989), Progr. Probab., vol. 22, pp. 139–146. Birkhäuser, Boston (1990)

    Google Scholar 

  17. Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator (preprint) (2011). arXiv:1105.5181

  18. Getoor, R.K.: First passage time for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaleta, K.: Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval. Stud. Math. 209, 267–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, S., Lee, K.-A.: Geometric property of the ground state eigenfunction for Cauchy process (preprint) (2011). arXiv:1105.3283

  21. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kulczycki, T.: Intrinsic ultracontractivity for symmetric stable processes. Bull. Pol. Acad. Sci., Math. 46, 325–334 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Kulczycki, T., Siudeja, B.: Intrinsic ultracontractivity of Feynman–Kac semigroup for relativistic stable processes. Trans. Am. Math. Soc. 358(11), 5025–5057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, New York (2010)

    Google Scholar 

  25. Ryznar, M.: Estimates of Green function for relativistic α-stable process. Potential Anal. 17, 1–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Silvestre, L.: On the differentiability of the solution to an equation with drift and fractional diffusion. Indiana Univ. Math. J. (2011). arXiv:1012.2401v2

  27. Song, R.: Sharp bounds on the density, Green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields 128, 606–628 (2004)

    Article  MATH  Google Scholar 

  28. Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics and Computer Science, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland

    Tadeusz Kulczycki

Authors
  1. Tadeusz Kulczycki
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tadeusz Kulczycki.

Additional information

The research was supported in part by NCN grant no. 2011/03/B/ST1/00423.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Kulczycki, T. Gradient Estimates of q-Harmonic Functions of Fractional Schrödinger Operator. Potential Anal 39, 69–98 (2013). https://doi.org/10.1007/s11118-012-9322-9

Download citation

  • Received: 02 August 2012

  • Accepted: 22 October 2012

  • Published: 09 November 2012

  • Issue Date: July 2013

  • DOI: https://doi.org/10.1007/s11118-012-9322-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Schrodinger operator
  • Fractional Laplacian
  • Green function
  • Harmonic function
  • Gradient

Mathematics Subject Classifications (2010)

  • Primary 35S15
  • Secondary 60G52
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.