Abstract
We study gradient estimates of q-harmonic functions u of the fractional Schrödinger operator Δα/2 + q, α ∈ (0, 1] in bounded domains D ⊂ ℝd. For nonnegative u we show that if q is Hölder continuous of order η > 1 − α then \(\nabla u(x)\) exists for any x ∈ D and \(|\nabla u(x)| \le c u(x)/ ({\rm dist}(x,\partial D) \wedge 1)\). The exponent 1 − α is critical i.e. when q is only 1 − α Hölder continuous \(\nabla u(x)\) may not exist. The above gradient estimates are well known for α ∈ (1, 2] under the assumption that q belongs to the Kato class \(\mathcal{J}^{\alpha - 1}\). The case α ∈ (0, 1] is different. To obtain results for α ∈ (0, 1] we use probabilistic methods. As a corollary, we obtain for α ∈ (0, 1) that a weak solution of Δα/2 u + q u = 0 is in fact a strong solution.
References
Bañuelos, R., Kulczycki, T.: The Cauchy process and the Steklov problem. J. Funct. Anal. 211(2), 355–423 (2004)
Banũelos, R., Pang, M.H.: Lower bound gradient estimates for solutions of Schrödinger equations and heat kernels. Commun. Partial Differ. Equ. 24, 499–543 (1999)
Bañuelos, R., Kulczycki, Méndez-Hernández, P.J.: On the shape of the ground state eigenfunction for stable processes. Potential Anal. 24, 205–221 (2006)
Bañuelos, R., Kulczycki, T., Siudeja, B.: On the trace of symmetric stable processes on Lipschitz domains. J. Funct. Anal. 257, 3329–3352 (2009)
Blumenthal, R.M., Getoor, R.K.: Markov processes and their potential theory. In: Pure Appl. Math. Academic Press, New York (1968)
Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99, 540–554 (1961)
Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraček, Z.: Potential analysis of stable processes and its extensions. In: Lecture Notes in Mathematics, vol. 1980, Springer, Berlin (2009)
Bogdan, K., Byczkowski, T.: Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domain. Stud. Math. 133, 53–92 (1999)
Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Stat. 20, 293–335 (2000)
Bogdan, K., Byczkowski, T., Nowak, A.: Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes. Ill. J. Math. 46, 541–556 (2002)
Böttcher, B., Schilling, R., Wang, J.: Constructions of coupling processes for Lévy processes. Stoch. Process. Their Appl. 121, 1201–1216 (2011)
Chen, Z.-Q., Song, R.: Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150, 204–239 (1997)
Chen, Z.-Q., Kim, P., Song, R.: Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab. 40, 213–244 (2012)
Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, 90–113 (2005)
Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (1995)
Cranston, M., Zhao, Z.: Some regularity results and eigenfunction estimates for the Schrödinger operator. In: Diffusion Processes and Related Problems in Analysis, I (Evanston, IL, 1989), Progr. Probab., vol. 22, pp. 139–146. Birkhäuser, Boston (1990)
Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator (preprint) (2011). arXiv:1105.5181
Getoor, R.K.: First passage time for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961)
Kaleta, K.: Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval. Stud. Math. 209, 267–287 (2012)
Kim, S., Lee, K.-A.: Geometric property of the ground state eigenfunction for Cauchy process (preprint) (2011). arXiv:1105.3283
Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)
Kulczycki, T.: Intrinsic ultracontractivity for symmetric stable processes. Bull. Pol. Acad. Sci., Math. 46, 325–334 (1998)
Kulczycki, T., Siudeja, B.: Intrinsic ultracontractivity of Feynman–Kac semigroup for relativistic stable processes. Trans. Am. Math. Soc. 358(11), 5025–5057 (2006)
Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, New York (2010)
Ryznar, M.: Estimates of Green function for relativistic α-stable process. Potential Anal. 17, 1–23 (2002)
Silvestre, L.: On the differentiability of the solution to an equation with drift and fractional diffusion. Indiana Univ. Math. J. (2011). arXiv:1012.2401v2
Song, R.: Sharp bounds on the density, Green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields 128, 606–628 (2004)
Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was supported in part by NCN grant no. 2011/03/B/ST1/00423.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Kulczycki, T. Gradient Estimates of q-Harmonic Functions of Fractional Schrödinger Operator. Potential Anal 39, 69–98 (2013). https://doi.org/10.1007/s11118-012-9322-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11118-012-9322-9
Keywords
- Schrodinger operator
- Fractional Laplacian
- Green function
- Harmonic function
- Gradient
Mathematics Subject Classifications (2010)
- Primary 35S15
- Secondary 60G52