Skip to main content
Log in

Extrapolation for Classes of Weights Related to a Family of Operators and Applications

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this work we give extrapolation results on weighted Lebesgue spaces for weights associated to a family of operators. The starting point for the extrapolation can be the knowledge of boundedness on a particular Lebesgue space as well as the boundedness on the extremal case L . This analysis can be applied to a variety of operators appearing in the context of a Schrödinger operator ( −Δ + V) where V satisfies a reverse Hölder inequality. In that case the weights involved are a localized version of Muckenhoupt weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for commutators of Schrödinger–Riesz transforms. J. Math. Anal. Appl. 392, 6–22 (2012). doi:10.1016/j.jmaa.2012.02.008

    Google Scholar 

  2. Bongioanni, B., Harboure, E., Salinas, O.: Weigthed inequalities for negative powers of Schrödinger operators. J. Math. Anal. Appl. 348, 12–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bongioanni, B., Harboure, E., Salinas, O.: Classes of weights related to Schrödinger operators. J. Math. Anal. Appl. 373(2), 563–579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bongioanni, B., Harboure, E., Salinas, O.: Commutators of Riesz transforms related to Schrödinger operators. J. Fourier Anal. Appl. 17(1), 115–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, extrapolation and the theory of Rubio de Francia. In: Operator Theory: Advances and Applications, vol. 215. Birkhäuser/Springer Basel AG, Basel (2011)

    Google Scholar 

  6. Dziubański, J., Zienkiewicz, J.: Hardy spaces H 1 associated to Schrödinger operators with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999)

    Article  MATH  Google Scholar 

  7. Dziubański, J., Zienkiewicz, J.: H p spaces associated with Schrödinger operator with potential from reverse Hölder classes. Colloq. Math. 98(1), 5–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J., Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249(2), 329–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. García-Cuerva, J.: An extrapolation theorem in the theory of A p weights. Proc. Am. Math. Soc. 87(3), 422–426 (1983)

    MATH  Google Scholar 

  10. Guo, Z., Li, P., Peng, L.: L p boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341(1), 421–432 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harboure, E., Macías, R.A., Segovia, C.: Extrapolation results for classes of weights. Am. J. Math. 110(3), 383–397 (1988)

    Article  MATH  Google Scholar 

  12. Kurata, K.: An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials. J. Lond. Math. Soc. (2) 62(3), 885–903 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muckenhoupt, B., Wheeden, R.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54(3), 221–237 (1975/76)

    MathSciNet  Google Scholar 

  14. Pradolini, G., Salinas, O.: Commutators of singular integrals on spaces of homogeneous type. Czechoslov. Math. J. 57(132)(1), 75–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rubio de Francia, J.L.: Factorization and extrapolation of weights. Bull. Am. Math. Soc. (N.S.) 7(2), 393–395 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rubio de Francia, J.L.: A new technique in the theory of A p weights. In: Topics in Modern Harmonic Analysis (Turin/Milan, 1982), vols. I, II, pp. 571–579. Ist. Naz. Alta Mat. Francesco Severi, Rome (1983)

  17. Rubio de Francia, J.L.: Factorization theory and A p weights. Am. J. Math. 106(3), 533–547 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, Z.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang, L.: Weighted norm inequalities for Schrödinger type operators. arXiv:1109.0099

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bongioanni.

Additional information

This research is partially supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (UNL), Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongioanni, B., Cabral, A. & Harboure, E. Extrapolation for Classes of Weights Related to a Family of Operators and Applications. Potential Anal 38, 1207–1232 (2013). https://doi.org/10.1007/s11118-012-9313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9313-x

Keywords

Mathematics Subject Classifications (2010)

Navigation