Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Harnack Inequality and Regularity for a Product of Symmetric Stable Process and Brownian Motion

  • 88 Accesses

  • 4 Citations

Abstract

In this paper, we consider a product of a symmetric stable process in ℝd and a one-dimensional Brownian motion in ℝ + . Then we define a class of harmonic functions with respect to this product process. We show that bounded non-negative harmonic functions in the upper-half space satisfy Harnack inequality and prove that they are locally Hölder continuous. We also argue a result on Littlewood–Paley functions which are obtained by the α-harmonic extension of an L p(ℝd) function.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

  2. 2.

    Bass, R.F.: Diffusions and Elliptic Operators. Springer, New York (1998)

  3. 3.

    Bass, R.F., Levin, D.A.: Harnack inequalities for jump processes. Potential Anal. 17, 375–388 (2002)

  4. 4.

    Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, NewJersey (2004)

  5. 5.

    Karlı, D.: Probabilistic Littlewood–Paley Theory. PhD Dissertation, University of Connecticut (2010)

  6. 6.

    Krylov, N.V., Safonov, M.V.: An estimate of the probability that a diffusion process hits a set of positive measure. Sov. Math. Dokl. 20, 253–255 (1979)

  7. 7.

    Meyer, P.A.: Démonstration probabiliste de certaines inégalites de Littlewood–Paley. Sémin. Probab. (Strasbourg) 10, 164–174 (1976)

  8. 8.

    Meyer, P.A.: Démonstration probabiliste de certaines inégalites de Littlewood–Paley. Exposé IV: semi-groupes de convolution symétriques. Sémin. Probab. (Strasbourg) 10, 175–183 (1976)

  9. 9.

    Meyer, P.A.: Correction: Inégalites de Littlewood–Paley (Strasbourg) vol. 12, pp. 741–741 (1978)

  10. 10.

    Meyer, P.A.: Retour sur la theorie de Littlewood–Paley. Sémin. Probab. (Strasbourg) 15, 151–166 (1981)

  11. 11.

    Sato, K-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

  12. 12.

    Varopoulos, N.: Aspects of probabilistic Littlewood–Paley theory. J. Funct. Anal. 38, 25–60 (1980)

Download references

Author information

Correspondence to Deniz Karlı.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karlı, D. Harnack Inequality and Regularity for a Product of Symmetric Stable Process and Brownian Motion. Potential Anal 38, 95–117 (2013). https://doi.org/10.1007/s11118-011-9265-6

Download citation

Keywords

  • Harnack inequality
  • Symmetric stable process
  • Regularity
  • Dirichlet problem
  • Littlewood–Paley functions

Mathematics Subject Classifications (2010)

  • 60
  • 42