Skip to main content
Log in

Semigroups, Potential Spaces and Applications to (S)PDE

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The paper studies perturbed semilinear parabolic partial (pseudo-) differential equations on σ-finite measure spaces under low smoothness assumptions. We obtain results on existence, uniqueness and regularity. The hypotheses are formulated in terms of the semigroup, regularity is measured by means of abstract potential spaces. Being a priori analytic, our results allow to investigate related stochastic partial differential equations in the almost sure pathwise sense. For example we can study (fractional) semilinear heat equations driven by fractional Brownian noises on metric measure spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Continuité des contractions dans les espaces de Dirichlet. In: Sém. Théorie Pot., Paris, pp. 1–26. LNM, vol. 563. Springer, New York (1976)

    Chapter  Google Scholar 

  2. Barlow, M.T.: Diffusions on Fractals. LNM, vol. 1690. Springer, New York (1998)

    Google Scholar 

  3. Barlow, M.T., Bass, R.: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré 25, 225–257 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Bass, R.F., Kumagai, T.: Symmetric Markov chains on ℤd with unbounded range. Trans. Am. Math. Soc. 360(4), 2041–2075 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass, R.F., Levin, D.A.: Transition probabilities for symmetric jump processes. Trans. AMS 354(7), 2933–2953 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bendikov, A., Maheux, P.: Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Am. Math. Soc. 359, 3085–3097 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berens, H., Butzer, P.L., Westphal, U.: Representation of fractional powers of infinitesimal generators of semigroups. Bull. Am. Math. Soc. 74, 191–196 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogdan, K., Burdzy, K., Chen, Zh.-Q.: Censored stable processes. Probab. Theory Relat. Fields 127, 89–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. deGruyter, Berlin, New York (1991)

    MATH  Google Scholar 

  10. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré 23, 245–287 (1987)

    MathSciNet  Google Scholar 

  11. Chen, Z.-Q., Kumagai, T.: A priori Hölder estimates, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoam. 26(2), 551–589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coulhon, Th.: Ultracontractivity and Nash type inequalitites. J. Funct. Anal. 141, 510–539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4–6, 1–29 (1999)

    Google Scholar 

  14. DaPrato, G., Zabzcyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge (1992)

    Book  Google Scholar 

  15. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  16. Falconer, K.J., Hu, J.: Nonlinear diffusion equations on unbounded fractal domains. J. Math. Anal. Appl. 256, 606–624 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. deGruyter, Berlin, New York (1994)

    Book  MATH  Google Scholar 

  18. Gubinelli, M., Lejay, A., Tindel, S.: Young integrals and SPDE’s. Potential Anal. 25, 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hambly, B.M.: Brownian motion on a random recursive Sierpinski gasket. Ann. Probab. 25, 1059–1102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinz, M.: Burgers system with a fractional Brownian random force. Stochastics 83(1), 67–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hinz, M., Zähle, M.: Gradient type noises I—partial and hybrid integrals. Compl. Var. Ell. Equations 54, 561–583 (2009)

    Article  MATH  Google Scholar 

  22. Hinz, M., Zähle, M.: Gradient type noises II—systems of partial differential equations. J. Funct. Anal. 256, 3192–3235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoh, W., Jacob, N.: On the Dirichlet problem for pseudo-differential operators generating Feller semigroups. J. Funct. Anal. 137, 19–48 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, J., Zähle, M.: Potential spaces on fractals. Stud. Math. 170, 259–281 (2005)

    Article  MATH  Google Scholar 

  25. Hu, J., Zähle, M.: Generalized bessel and Riesz potential spaces on metric measure spaces. Potential Anal. 30, 315–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jacob, N., Schilling, R.: Some Dirichlet spaces obtained by subordinate reflected diffusions. Rev. Mat. Iberoam. 15, 59–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  28. Kigami, J.: Harmonic analysis for resistance forms. J. Funct. Anal. 204, 399–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khoshnevisan, D., Foondun, M., Nualart, E.: A local-time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc. 363, 2481–2515 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumagai, T.: Some remarks for jump processes on fractals. In: Grabner, P., Woess, W. (eds.) Trends in mathematics: fractals in Graz. Birkhäuser, Basel (2001)

    Google Scholar 

  31. Maslowski, B., Nualart, D.: Evolution equations driven by fractional Brownian motion. J. Funct. Anal. 202, 277–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  33. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. LNM, vol. 1905. Springer, New York (2007)

    Google Scholar 

  34. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach (1993)

  35. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Ann. Math. Stud. Princeton University Press, Princeton (1970)

    Google Scholar 

  36. Strichartz, R.S.: Differential Equations on Fractals. Princeton Univ. Press, Princeton (2006)

    MATH  Google Scholar 

  37. Taylor, M.E.: Pseudodifferential Operators and Non-linear Partial Differential Equations. Birkhäuser, Boston (1991)

    Google Scholar 

  38. Teplyaev, A.: Harmonic coordinates on fractals with finitely ramified cell structure. Can. J. Math. 60, 457–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields 127, 186–204 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. J.A. Barth (1995)

  41. Varopoulos, N.: Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63, 240–260 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Walsh, J.B.: An introduction to stochastic partial differential equations. École d’été de probabilités de Saint-Flour, XIV-1984, LNM 1180. Springer (1986)

  43. Wang, F.Y.: Functional inequalities, semigroup properties and spectrum estimates. Inf. Dim. Anal., Quant. Probab. Rel. Topics 3(2), 263–295 (2000)

    Article  MATH  Google Scholar 

  44. Yosida, K.: Functional Analysis. Springer, New York (1980)

    MATH  Google Scholar 

  45. Zähle, M.: Integration with respect to Fractal Functions and Stochastic Calculus I. Probab. Theory Relat. Fields 111, 333–374 (1998)

    Article  MATH  Google Scholar 

  46. Zähle, M.: Integration with respect to fractal functions and stochastic calculus II. Math. Nachr. 225, 145–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinz, M., Zähle, M. Semigroups, Potential Spaces and Applications to (S)PDE. Potential Anal 36, 483–515 (2012). https://doi.org/10.1007/s11118-011-9238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-011-9238-9

Keywords

Mathematics Subject Classifications (2010)

Navigation