Skip to main content
Log in

The Regularity Problems with Data in Hardy–Sobolev Spaces for Singular Schrödinger Equation in Lipschitz Domains

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let the nonnegative singular potential V belong to the reverse Hölder class \({\mathcal B}_n\) on \({\mathbb R}^n\), and let (n − 1)/n < p ≤ 2, we establish the solvability and derivative estimates for the solutions to the Neumann problem and the regularity problem of the Schrödinger equation − Δu + Vu = 0 in a connected Lipschitz domain Ω, with boundary data in the Hardy space \(H^p(\partial \Omega)\) and the modified Hardy–Sobolev space \(H_{1, V}^p(\partial \Omega)\) related to the potential V. To deal with the H p regularity problem, we construct a new characterization of the atomic decomposition for \(H_{1, V}^p(\partial \Omega)\) space. The invertibility of the boundary layer potentials on Hardy spaces and Hölder spaces are shown in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, R.M.: The Neumann problem on Lipschitz domains in Hardy spaces of order less than one. Pac. J. Math. 171(2), 389–407 (1995)

    MATH  Google Scholar 

  2. Chang, D.C., Dafni, G., Stein, E.M.: Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in R N. Trans. Am. Math. Soc. 351, 1605–1661 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coifman, R.R., McIntosh, A., Meyer, Y.: L’integral de Cauchy definit un operateur borne sur L 2 pour les courbes Lipschitziennes. Ann. Math. 116, 361–388 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dahlberg, B.: On estimates for harmonic measure. Arch. Ration. Mech. Anal. 65, 272–288 (1977)

    Article  MathSciNet  Google Scholar 

  6. Dahlberg, B.: On the Poisson integral for Lipschitz and C 1 domains. Stud. Math. 66, 13–24 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Dahlberg, B., Kening, C.: Hard space and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Ann. Math. 125, 437–464 (1987)

    Article  MATH  Google Scholar 

  8. Dziubański, J., Zienkiewicz, J.: Hardy space H 1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999)

    Article  MATH  Google Scholar 

  9. Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabes, E., Jodeit, J.R.M., Riviére, N.: Potential techniques for boundary value problem on C 1-domains. Acta Math. 141, 165–186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 137–193 (1979)

    Article  Google Scholar 

  12. Grüter, M., Widman, K.O.: The green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)

    Article  MATH  Google Scholar 

  13. Jerson, D., Kenig, C.: An identity with applications to harmonic measure. Bull. Am. Math. Soc. 2, 447–451 (1980)

    Article  Google Scholar 

  14. Kenig, C.: Harmonic analysis techniques for second order elliptic boundary value problems, CBMS. Reg. Conf. Ser. Math. 83, 45–63 (1994)

    MathSciNet  Google Scholar 

  15. Mayboroda, S., Mitrea, M.: Layer potentials and boundary value problems for Laplacian in Lipschitz domains with data in quasi-Banach Besov spaces. Ann Mat. Pura Appl. 185, 155–187 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Muckenhoupt, B.: Weighted norm inequality for the Hardy maximal function. Trans. Am. Math. Soc. 137, 247–226 (1977)

    Google Scholar 

  17. Shen, Z.: On the Neumann problem for Schrödinger operators in Lipschitz domains. Indiana Univ. Math. J. 43(1), 143–176 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, Z.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier, Grennoble 45, 513–546 (1995)

    Article  MATH  Google Scholar 

  19. Shin Kim, A., Shen, Z.: The Neumann problem in L p on Lipschitz and convex domains. J. Funct. Anal. 255, 1817–1830 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, X.-X., Wang, H.-G.: On the Neumann problem for the Schrödinger equations with singular potential in Lipschitz domains. Can. J. Math. 56(3), 655–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Verchota, G.C.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation on Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxing Tao.

Additional information

This work is funded by the NNSF of China under Grant #10771110 and #10471069.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, X. The Regularity Problems with Data in Hardy–Sobolev Spaces for Singular Schrödinger Equation in Lipschitz Domains. Potential Anal 36, 405–428 (2012). https://doi.org/10.1007/s11118-011-9233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-011-9233-1

Keywords

Mathematics Subject Classifications (2010)

Navigation