Skip to main content
Log in

Restricted Mean Value Property for Balayage Spaces with Jumps

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

It is shown that, for α-stable processes (Riesz potentials) or—more generally—for balayage spaces with jumps, “one-radius” results for harmonicity can be obtained under fairly weak assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bliedtner, J., Hansen, W.: Potential Theory—An Analytic and Probabilistic Approach to Balayage. Universitext, Springer, Berlin-Heidelberg-New York-Tokyo (1986)

    MATH  Google Scholar 

  2. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123(1), 43–80 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Wiley Classics Library. Wiley, New York (1989) (Partial Differential Equations, Reprint of the 1962 original, A Wiley-Interscience Publication)

    Google Scholar 

  4. Hansen, W.: Restricted mean value property and harmonic functions. In: Potential Theory—ICPT 94 (Kouty, 1994), pp. 67–90. de Gruyter, Berlin (1996)

    Google Scholar 

  5. Hansen, W.: Littlewood’s one-circle problem, revisited. Expo. Math. 26(4), 365–374 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Hansen, W.: A strong version of Liouville’s theorem. Am. Math. Mon. 115(7), 583–595 (2008)

    MATH  Google Scholar 

  7. Hansen, W., Nadirashvili, N.: A converse to the mean value theorem for harmonic functions. Acta Math. 171(2), 139–163 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hansen, W., Nadirashvili, N.: Littlewood’s one circle problem. J. Lond. Math. Soc. (2) 50(2), 349–360 (1994)

    MATH  MathSciNet  Google Scholar 

  9. Hansen, W., Nadirashvili, N.: Liouville’s theorem and the restricted mean value property. J. Math. Pures Appl. (9) 74(2), 185–198 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Hansen, W., Nikolov, N.: One radius results for supermedian functions on \( \mathbb{R}^c ,\,d \leqslant 2\). Math. Ann. 349, 565–575 (2010)

    Article  MathSciNet  Google Scholar 

  11. Heath, D.: Functions possessing restricted mean value properties. Proc. Am. Math. Soc. 29, 588–595 (1973)

    Article  MathSciNet  Google Scholar 

  12. Netuka, I., Veselý, J.: Mean value property and harmonic functions. In: Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 430, pp. 359–398. Kluwer Acad. Publ., Dordrecht (1994)

    Google Scholar 

  13. Veech, W.A.: A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem. Ann. Math. (2) 97, 189–216 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfhard Hansen.

Additional information

The author is indebted to Moritz Kaßmann for suggesting the investigation of this matter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, W. Restricted Mean Value Property for Balayage Spaces with Jumps. Potential Anal 36, 263–273 (2012). https://doi.org/10.1007/s11118-011-9229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-011-9229-x

Keywords

Mathematics Subject Classifications (2010)

Navigation