Skip to main content

Advertisement

Log in

Harnack Inequalities for some Lévy Processes

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove Harnack inequality for nonnegative functions which are harmonic with respect to random walks in ℝd. We give several examples when the scale invariant Harnack inequality does not hold. For any α ∈ (0,2) we also prove the Harnack inequality for nonnegative harmonic functions with respect to a symmetric Lévy process in ℝd with a Lévy density given by \(c|x|^{-d-\alpha}1_{\{|x|\leq 1\}}+j(|x|)1_{\{|x|>1\}}\), where 0 ≤ j(r) ≤ cr  − d − α, ∀ r > 1, for some constant c. Finally, we establish the Harnack inequality for nonnegative harmonic functions with respect to a subordinate Brownian motion with subordinator with Laplace exponent ϕ(λ) = λ α/2ℓ(λ), λ > 0, where ℓ is a slowly varying function at infinity and α ∈ (0,2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357, 837–850 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bass, R.F., Kumagai, T.: Symmetric Markov chains on ℤd with unbounded range. Trans. Am. Math. Soc. 360, 2041–2075 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bass, R.F., Levin, D.A.: Harnack inequalities for jump processes. Potential Anal. 17, 375–388 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  6. Bogdan, K., Sztonyk, P.: Potential theory for Lévy stable processes. Bull. Pol. Acad. Sci., Math. 50, 361–372 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Bogdan, K., Sztonyk, P.: Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian. Stud. Math. 181, 101–123 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bogdan, K., Sztonyk, P.: Harnack’s inequality for stable Lévy processes. Potential Anal. 22, 133–150 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, Z.-Q., Song, R.: Estimates on green functions and poisson kernels of symmetric stable processes. Math. Ann. 312, 465–601 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, Z.-Q., Kim, P., Kumagai, T.: Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342, 833–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (2001)

    MATH  Google Scholar 

  12. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181–232 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter De Gruyter, Berlin (1994)

    MATH  Google Scholar 

  14. Grigor’yan, A., Telcs, A.: Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324, 521–556 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ikeda, N., Watanabe, S.: On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. Math. J. Kyoto Univ. 2, 79–95 (1962)

    MATH  MathSciNet  Google Scholar 

  16. Jacob, N.: Pseudo Differential Operators and Markov Processes, vol. 1. Imperial College Press, London (2001)

    Google Scholar 

  17. Kim, P., Song, R.: Potential theory of truncated stable processes. Math. Z. 256, 139–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for subordinate Brownian motions. Stoch. Process. Appl. 119, 1601–1631 (2009)

    Article  MATH  Google Scholar 

  19. Lawler, G.F., Polaski, T.W.: Harnack inequalities and difference estimates for random walks with infinite range. J. Theor. Probab. 6, 781–802 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Song, R., Vondraček, Z.: Harnack inequalities for some classes of Markov processes. Math. Z. 246, 177–202 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motion. In: Graczyk, P., Stos, A. (eds.) Potential Analysis of Stable Processes and its Extensions. Lecture Notes in Mathematics, vol. 1980, pp. 87–176. Springer, New York (2009)

    Chapter  Google Scholar 

  23. Sztonyk, P.: On harmonic measure for Lévy processes. Probab. Math. Stat. 20, 383–390 (2000)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ante Mimica.

Additional information

Research supported in part by the MZOS Grant 037-0372790-2801 of the Republic of Croatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimica, A. Harnack Inequalities for some Lévy Processes. Potential Anal 32, 275–303 (2010). https://doi.org/10.1007/s11118-009-9153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-009-9153-5

Keywords

Mathematics Subject Classifications (2000)

Navigation