Skip to main content
Log in

Riesz s-Equilibrium Measures on d-Rectifiable Sets as s Approaches d

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let A be a compact set in \({\mathbb R}^{p}\) of Hausdorff dimension d. For s ∈ (0,d) the Riesz s-equilibrium measure μ s is the unique Borel probability measure with support in A that minimizes

$$ {I_s}(\mu):=\int\int{\frac{1}{{|{x} - {y}|}^{s}}}d\mu(y)d\mu(x) $$

over all such probability measures. If A is strongly \(({\mathcal H}^d, d\kern.5pt)\)-rectifiable, then μ s converges in the weak-star topology to normalized d-dimensional Hausdorff measure restricted to A as s approaches d from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, T., Fisher, A.M.: Analogues of the Lebesgue density theorem for fractal sets of reals and integers. Proc. London Math. Soc. (3) 64(1), 95–124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borodachov, S., Hardin, D., Saff, E.: Asymptotics for discrete weighted minimal energy problems on rectifiable sets. Trans. Amer. Math. Soc. 360(3), 1559–1580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Federer, H.: Geometric Measure Theory, 1st edn. Springer, New York (1969)

    MATH  Google Scholar 

  4. Götz, M.: On the Riesz energy of measures. J. Approx. Theory 122(1), 62–78 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hardin, D., Saff, E.: Minimal riesz energy point configurations for rectifiable d-dimensional manifolds. Adv. Math. 193, 174–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51(10), 1186–1194 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Hinz, M.: Average densities and limits of potentials. Master’s thesis, Universität Jena, Jena (2005)

  8. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1973)

    Google Scholar 

  9. Mattila, P.: Geometry of Sets and Measures in Euclidian Spaces. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  10. Putinar, M.: A renormalized Riesz potential and applications. In: Advances in Constructive Approximation: Vanderbilt 2003, Mod. Methods Math., pp. 433–465. Nashboro, Brentwood (2004)

    Google Scholar 

  11. Wolff, T.H.: Lectures on Harmonic Analysis, University Lecture Series, vol. 29. American Mathematical Society, Providence (2003)

    Google Scholar 

  12. Zähle, M.: The average density of self-conformal measures. J. London Math. Soc. (2) 63(3), 721–734 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Calef.

Additional information

This research was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0808093.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calef, M.T., Hardin, D.P. Riesz s-Equilibrium Measures on d-Rectifiable Sets as s Approaches d . Potential Anal 30, 385–401 (2009). https://doi.org/10.1007/s11118-009-9122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-009-9122-z

Keywords

Mathematics Subject Classifications (2000)

Navigation