Skip to main content

Advertisement

Log in

Hardy Inequality and Weighted Heat Trace

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Upper bounds are obtained for the heat trace weighted by a negative power of the distance to the boundary of an open set D in a complete Riemannian manifold, provided the Dirichlet-Laplace-Beltrami operator acting in L 2(D) satisfies a strong Hardy inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: On strong barriers and an inequality of Hardy for domains in \(\mathbb{R}^n\). J. London Math. Soc. 34, 274–290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. van den Berg, M.: Heat content and Hardy inequality for complete Riemannian manifolds. J. Funct. Anal. 233, 478–493 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. van den Berg, M.: Heat flow and Hardy inequality in complete Riemannian manifolds with singular initial conditions. J. Funct. Anal. 250, 114–131 (2007)

    Article  MathSciNet  Google Scholar 

  4. van den Berg, M., Gilkey, P., Kirsten, K., Seeley, R.: Heat trace asymptotics with singular weight functions. arXiv: 0806.1706 (2008)

  5. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4), 217–237 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Davies, E.B.: The Hardy constant. Quart. J. Math. 46(2), 417–431 (1995)

    Article  MATH  Google Scholar 

  7. Davies, E.B.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 55–67 (1999)

    Google Scholar 

  8. Davies, E.B.: Sharp boundary estimates for elliptic operators. Math. Proc. Cambridge Philos. Soc. 129, 165–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davies, E.B., Lianantonakis, M.: Heat kernel and Hardy estimates for locally Euclidean manifolds with fractal boundaries. Geom. Funct. Anal. 3, 527–563 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grigoryan, A.: Estimates of heat kernels on Riemannian manifolds. In: Spectral Theory and Geometry, London Mathematical Society Lecture Note Series, vol. 273, pp. 140–225 (1999)

  11. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy’s inequality. J. Funct. Anal. 209, 425–443 (2004)

    Article  MathSciNet  Google Scholar 

  12. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985)

    MATH  Google Scholar 

  13. Lapidus, M.L., Pang, M.M.H.: Eigenfunctions of the Koch snowflake domain. Comm. Math. Phys. 172, 359–376 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marcus, M., Mizel, V.J., Pinchover, Y.: On the best constant for Hardy’s inequality in \(\mathbb{R}^n\). Trans. Amer. Math. Soc. 350, 3237–3255 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. van den Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, M. Hardy Inequality and Weighted Heat Trace. Potential Anal 30, 201–209 (2009). https://doi.org/10.1007/s11118-008-9111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-008-9111-7

Keywords

Mathematics Subject Classifications (2000)

Navigation