Skip to main content
Log in

Poisson Kernel and Green Function of the Ball in Real Hyperbolic Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let (X t ) t⩾0 be the n-dimensional hyperbolic Brownian motion, that is the diffusion on the real hyperbolic space \(\mathbb{D}^{n}\) having the Laplace–Beltrami operator as its generator. The aim of the paper is to derive the formulas for the Gegenbauer transform of the Poisson kernel and the Green function of the ball for the process (X t ) t⩾0. Under additional hypotheses we prove integral representations for the Poisson kernel. This yields explicit formulas in \(\mathbb{D}^{4}\) and \(\mathbb{D}^{6}\) spaces for the Poisson kernel and the Green function as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P., Tarabusi, C.E., Figá-Talamanca, A.: Stable laws arising from hitting distributions of processes on homogeneous trees and the hyperbolic half-plane. Pacific J. Math. 197(2), 257–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press Inc., New York (1968)

    MATH  Google Scholar 

  3. Bougerol, P., Jeulin, T.: Brownian bridge on hyperbolic spaces and on homogeneous trees. Probab. Theory Related Fields 115, 95–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byczkowski, T., Graczyk, P., Stos, A.: Poisson kernels of half-space in real hyperbolic spaces. Rev. Mat. Iberoamericana 23(1), 85–126 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press Inc., New York (1984)

    MATH  Google Scholar 

  6. Chung, K.L.: Lectures from Markov Processes to Brownian Motion. Springer-Verlag, New York (1982)

    MATH  Google Scholar 

  7. Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer-Verlag, New York (1995)

    MATH  Google Scholar 

  8. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge (1989)

    MATH  Google Scholar 

  9. Erdelyi et al. (eds.): Higher Transcendental Functions, vol. I and II. McGraw-Hill, New York (1953–1955)

    Google Scholar 

  10. Dufresne, D.: The distribution of a perpetuity, with application to risk theory and pension funding. Scand. Actuar. J. 1–2 39–79 (1990)

    MathSciNet  Google Scholar 

  11. Folland, G.B.: Fourier Analysis and its Applications. Wadsworth and Brooks, Pacific Grove, California (1992)

    MATH  Google Scholar 

  12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Pub. Company, London (1981)

    MATH  Google Scholar 

  13. Yor, M. (ed.): Exponential functionals and principal values related to Brownian motion. Bibl. Rev. Mat. Iberoamericana, Madrid (1997)

  14. Wendel, J.G.: Hitting spheres with Brownian motion. Ann. Probab. 8, 164–169 (1980)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Małecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byczkowski, T., Małecki, J. Poisson Kernel and Green Function of the Ball in Real Hyperbolic Spaces. Potential Anal 27, 1–26 (2007). https://doi.org/10.1007/s11118-007-9050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-007-9050-8

Keywords

Mathematics Subject Classifications (2000)

Navigation