Skip to main content
Log in

Branching Brownian Motions on Riemannian Manifolds: Expectation of the Number of Branches Hitting Closed Sets

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

For a branching Brownian motion on Riemannian manifold, we give an analytic criterion for the expectation of the number of branches hitting a closed set being finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amor, A.B., Hansen, W.: Continuity of eigenvalues for Schrödinger operators, L p-properties of Kato type integral operators. Math. Ann. 321, 925–953 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, Z.-Q.: Gaugeability and conditional gaugeability. Trans. Amer. Math. Soc. 354, 4639–4679 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  4. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge, UK (1989)

    MATH  Google Scholar 

  5. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  6. Getoor, R.K.: Transience and recurrence of Markov processes. Lecture Notes in Math. 784, 397–409 (1980)

    Article  MathSciNet  Google Scholar 

  7. Grigor’yan, A., Kelbert, M.: Recurrence and transience of branching diffusion processes on Riemannian manifolds. Ann. Probab. 31, 244–284 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Has’minskii, R.Z.: On positive solutions of the equation \({\mathcal{U}u+Vu=0}\). Theory Probab. Appl. 4, 309–318 (1959)

    Article  MathSciNet  Google Scholar 

  9. Lalley, S.P., Sellke, T.: Hyperbolic branching Brownian motion. Probab. Theory Related Fields 108, 171–192 (1977)

    Article  MathSciNet  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Math, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  11. Menshikov, M.V., Volkov, S.E.: Branching Markov chains: qualitative characteristics. Markov Process. Related Fields 3, 225–241 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Murata, M.: Structure of positive solutions to (−Δ+V)u=0 in R n. Duke Math. J. 53, 869–943 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pinchover, Y.: Criticality and ground states for second-order elliptic equations. J. Differential Equations 80, 237–250 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Saloff-Coste, L.: Aspects of Sobolev inequalities. In: LMS Lecture Notes Series, vol. 289. Cambridge Univ. Press, Cambrdge, UK (2002)

    Google Scholar 

  15. Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5, 109–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Takeda, M.: Exponential decay of lifetime and a Theorem of Kac on total occupation times. Potential Anal. 11, 235–247 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Takeda, M.: Subcriticality and conditional gaugeability of generalized Schrödinger operators. J. Funct. Anal. 191, 343–376 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Takeda, M.: Gaugeability for Feynman-Kac functionals with applications to symmetric α-stable processes. Proc. Amer. Math. Soc. 134, 2729–2738 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Takeda.

Additional information

The author was supported in part by Grant-in-Aid for Scientific Research (No.18340033 (B)), Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, M. Branching Brownian Motions on Riemannian Manifolds: Expectation of the Number of Branches Hitting Closed Sets. Potential Anal 27, 61–72 (2007). https://doi.org/10.1007/s11118-007-9039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-007-9039-3

Key words

Mathematics Subject Classifications (2000)

Navigation