Skip to main content
Log in

On the Shape of the Ground State Eigenfunction for Stable Processes

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove that the ground-state eigenfunction for symmetric stable processes of order α∈(0,2) killed upon leaving the interval (−1,1) is concave on \((-\frac{1}{2},\frac{1}{2})\) . We call this property “mid-concavity”. A similar statement holds for rectangles in ℝd, d>1. These result follow from similar results for finite-dimensional distributions of Brownian motion and subordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bañuelos, R.: ‘Intrinsic ultracontarctivity and eigenfunction estimates for Schrödinger operators’, J. Funct. Anal. 100 (1991), 181–206.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bañuelos, R. and Kulczycki, T.: ‘The Cauchy process and the Steklov problem’, J. Funct. Anal. 211 (2004), 355–423.

    Article  MathSciNet  Google Scholar 

  3. Bañuelos, R., Latała, R. and Méndez-Hernández, P.J.: ‘A Brascamp–Lieb–Luttinger-type inequality and applications to symmetric stable processes’, Proc. Amer. Math. Soc. 129(10) (2001), 2997–3008.

    Article  MathSciNet  Google Scholar 

  4. Bañuelos, R. and Méndez-Hernández, P.J.: ‘Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps’, J. Funct. Anal. 176(2) (2000), 368–399.

    Article  MathSciNet  Google Scholar 

  5. Blumenthal, R.M. and Getoor, R.K.: ‘The asymptotic distribution of the eigenvalues for a class of Markov operators’, Pacific J. Math. 9 (1959), 399–408.

    MathSciNet  Google Scholar 

  6. Blumenthal, R.M. and Geetor, R.K.: ‘Some theorems on symmetric stable processes’, Trans. Amer. Soc. 95 (1960), 263–273.

    Article  Google Scholar 

  7. Blumenthal, R.M., Getoor, R.K. and Ray, D.B.: ‘On the distribution of first hits for the symmetric stable process’, Trans. Amer. Math. Soc. 99 (1961), 540–554.

    Article  MathSciNet  Google Scholar 

  8. Bogdan, K.: ‘The boundary Harnack principle for the fractional Laplacian’, Studia Math. 123(1) (1997), 43–80.

    MATH  MathSciNet  Google Scholar 

  9. Bogdan, K. and Byczkowski, T.: ‘Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains’, Studia Math. 133(1) (1999), 53–92.

    MathSciNet  Google Scholar 

  10. Borell, C.: ‘Examples of Brunn–Minkowski inequalities in diffusion theory’, Preprint.

  11. Borell, C.: ‘Geometric inequalities in option pricing’, in Convex Geometric Analysis (Berkeley, CA, 1996), pp. 29–51.

  12. Borell, C.: ‘Diffusion equations and geometric inequalities’, Potential Anal. 12 (2000), 49–71.

    Article  MATH  MathSciNet  Google Scholar 

  13. Brascamp, H.L. and Lieb, E.H.: ‘On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation’, J. Funct. Anal. 22 (1976), 366–389.

    Article  MathSciNet  Google Scholar 

  14. Chen, Z.Q. and Song, R.: ‘Intrinsic ultracontractivity and conditional gauge for symmetric stable processes’, J. Funct. Anal. 150(1) (1997), 204–239.

    Article  MathSciNet  Google Scholar 

  15. Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  16. Getoor, R.K.: ‘Markov operators and their associated semi-groups’, Pacific J. Math. 9 (1959), 449–472.

    MATH  MathSciNet  Google Scholar 

  17. Kulczycki, T.: ‘Intrinsic ultracontractivity for symmetric stable processes’, Bull. Polish Acad. Sci. Math. 46(3) (1998), 325–334.

    MATH  MathSciNet  Google Scholar 

  18. Ling, J.: ‘A lower bound for the gap between the first two eigenvalues of Schrödinger operators on convex domains in S n or R n’, Michigan Math. J. 40(2) (1993), 259–270.

    Article  MATH  MathSciNet  Google Scholar 

  19. Ryznar, M.: ‘Estimates of Green functions for relativistic α-stable processes’, Potential Anal. 17 (2002), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  20. Singer, I.M., Wong, B., Yau, S.-T. and Yau, S.S.-T.: ‘An estimate of the gap of the first two eigenvalues in the Schrödinger operator’, Ann. Scu. Norm. Sup. Pisa Cl. Sci. (4) 12(2) (1985), 319–333.

    MathSciNet  Google Scholar 

  21. Smits, R.: ‘Spectral gaps and rates to equilibrium for diffusions in convex domains’, Michigan Math. J. 43 (1996), 141–157.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bañuelos.

Additional information

Mathematics Subject Classification (2000)

30C45.

Rodrigo Bañuelos: R. Bañuelos was supported in part by NSF grant # 9700585-DMS.

Tadeusz Kulczycki: T. Kulczycki was supported by KBN grant 2 P03A 041 22 and RTN Harmonic Analysis and Related Problems, contract HPRN-CT-2001-00273-HARP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bañuelos, R., Kulczycki, T. & Méndez-Hernández, P.J. On the Shape of the Ground State Eigenfunction for Stable Processes. Potential Anal 24, 205–221 (2006). https://doi.org/10.1007/s11118-005-8569-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-005-8569-9

Keywords

Navigation