Skip to main content

Advertisement

Log in

Functional Inequalities for Particle Systems on Polish Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Various Poincaré–Sobolev type inequalities are studied for a reaction–diffusion model of particle systems on Polish spaces. The systems we consider consist of finite particles which are killed or produced at certain rates, while particles in the system move on the Polish space interacting with one another (i.e. diffusion). Thus, the corresponding Dirichlet form, which we call reaction–diffusion Dirichlet form, consists of two parts: the diffusion part induced by certain Markov processes on the product spaces E n (n≥1) which determine the motion of particles, and the reaction part induced by a Q-process on ℤ+ and a sequence of reference probability measures, where the Q-process determines the variation of the number of particles and the reference measures describe the locations of newly produced particles. We prove that the validity of Poincaré and weak Poincaré inequalities are essentially due to the pure reaction part, i.e. either of these inequalities holds if and only if it holds for the pure reaction Dirichlet form, or equivalently, for the corresponding Q-process. But under a mild condition, stronger inequalities rely on both parts: the reaction–diffusion Dirichlet form satisfies a super Poincaré inequality (e.g., the log-Sobolev inequality) if and only if so do both the corresponding Q-process and the diffusion part. Explicit estimates of constants in the inequalities are derived. Finally, some specific examples are presented to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Kondratiev, Yu.G. and Röckner, M.: ‘Analysis and geometry on configuration spaces’, J. Funct. Anal. 154 (1998), 444–500.

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Kondratiev, Yu.G. and Röckner, M.: ‘Analysis and geometry on configuration spaces: The Gibbsian case’, J. Funct. Anal. 157 (1998), 242–291.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertini, L., Cancrini, N. and Cesi, F.: ‘The spectral gap for a Glauber-type dynamics in a continuous gas’, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), 91–108.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobkov, S. and Ledoux, M.: ‘On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures’, J. Funct. Anal. 156 (1998), 347–365.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheeger, J., Gromov, M. and Taylor, M.: ‘Finite propagation speed, Laplace operator, and geometry of complete Riemannian manifolds’, J. Differential Geom. 17 (1982), 15–53.

    MathSciNet  MATH  Google Scholar 

  6. Chen, M.-F.: From Markov Chains to Non-Equilibrium Particle Systems, World Scientific, Singapore, 1992.

    MATH  Google Scholar 

  7. Chen, M.-F.: ‘Ergodic convergence rates of Markov processes – eigenvalues, inequalities and ergodic theory’, in Proceedings of ICM (Beijing 2002), Vol. III, Chinese High Edu. Press, Beijing, 2002, pp. 41–52.

    Google Scholar 

  8. Chen, M.-F. and Wang, F.-Y.: ‘Cheeger's inequalities for general symmetric forms and existence criteria for spectral gap’, Ann. Probab. 28 (2000), 235–257.

    Article  MathSciNet  MATH  Google Scholar 

  9. Davies, E.B. and Simon, B.: ‘Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians’, J. Funct. Anal. 59 (1984), 335–395.

    Article  MathSciNet  MATH  Google Scholar 

  10. Deuschel, J.-D. and Stroock, D.W.: ‘Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models’, J. Funct. Anal. 92 (1990), 30–48.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gong, F.-Z. and Wang, F.-Y.: ‘Functional inequalities for uniformly integrable semigroups and application to essential spectrum’, Forum Math. 14 (2002), 293–313.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gross, L.: ‘Logarithmic Sobolev inequalities’, Amer. J. Math. 97 (1976), 1061–1083.

    MATH  Google Scholar 

  13. Holley, R.A. and Stroock, D.W.: ‘Nearest neighbor birth and death processes on the real line’, Acta Math. 140 (1987), 103–154.

    MathSciNet  Google Scholar 

  14. Kondratiev, Y. and Lytvynov, E.: ‘Glauber dynamics of continuous particle systems’, Ann. Inst. H. Poincaré Probab. Statist., to appear.

  15. Latała, R. and Oleszkiewicz, K.: Between Sobolev and Poincaré', in Lecture Notes in Math. 1709, 1999, pp. 120–216.

  16. Ledoux, M.: ‘On Talagrand's deviation inequalities for product measures’, ESAIM: Probab. Statist. 1 (1996), 63–87.

    Article  MATH  MathSciNet  Google Scholar 

  17. Ma, Z.-M. and Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992.

  18. Mao, Y.-H.: ‘Logarithmic Sobolev inequalities for birth–death process and diffusion process on the line’, Chinese J. Appl. Probab. Statist. 18 (2002), 94–100.

    MathSciNet  Google Scholar 

  19. Mao, Y.-H.: ‘On supercontractivity for Markov semigroup,’ Preprint.

  20. Miclo, L.: ‘An example of application of discrete Hardy's inequalities’, Markov Proc. Related Fields 5 (1999), 319–330.

    MATH  MathSciNet  Google Scholar 

  21. Preston, C.: ‘Spatial birth-and-death processes,’ Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Vol. 2, Bull. Inst. Internat. Statist. 46 (1975), 371–391.

  22. Röckner, M.: ‘Stochastic analysis on configuration spaces: Basic ideas and recent results’, in New Directions in Dirichlet Forms, AMS/IP Stud. Adv. Math. 8, Amer. Math. Soc., Providence, RI, 1998, pp. 157–231.

    Google Scholar 

  23. Röckner, M. and Wang, F.-Y.: ‘Weak Poincaré inequalities and L 2-convergence rates of Markov semigroups’, J. Funct. Anal. 185 (2001), 564–603.

    Article  MathSciNet  MATH  Google Scholar 

  24. Röckner, M. and Wang, F.-Y.: ‘On the spectrum of a class of (nonsymmetric) diffusion operators’, Bull. London Math. Soc. 36 (2004), 95–104.

    Article  MathSciNet  MATH  Google Scholar 

  25. Stroock, D.W. and Zegarlinski, B.: ‘The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition’, Comm. Math. Phys. 144 (1992), 303–323.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, F.: ‘Latała–Oleszkiewicz inequalities,’ PhD Thesis, Department of Mathematics, Beijing Normal University, 2003.

  27. Wang, F.-Y.: ‘Existence of spectral gap for elliptic operators’, Ark. Mat. 37 (1999), 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, F.-Y.: ‘Functional inequalities for empty essential spectrum’, J. Funct. Anal. 170 (2000), 219–245.

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, F.-Y.: ‘Functional inequalities, semigroup properties and spectrum estimates’, Infinite Dimensions Anal. Quantum Probab. Related Topics 3 (2000), 263–295.

    MATH  Google Scholar 

  30. Wang, F.-Y.: ‘Logarithmic Sobolev inequalities: Conditions and counterexamples’, J. Operator Theory 46 (2001), 183–197.

    MathSciNet  Google Scholar 

  31. Wang, F.-Y.: ‘Coupling, convergence rates of Markov processes and weak Poincaré inequalities’, Sci. Sinica (A) 45 (2002), 975–983.

    MATH  Google Scholar 

  32. Wang, F.-Y.: ‘A generalization of Poincaré and log-Sobolev inequalities’, Potential Anal. 22 (2005), 1–15.

    MathSciNet  Google Scholar 

  33. Wu, L.: ‘A new modified logarithmic Sobolev inequality for Point processes and several applications’, Probab. Theory Related Fields 118 (2000), 427–438.

    Article  MATH  MathSciNet  Google Scholar 

  34. Wu, L.: ‘Estimates of spectral gap for continuous gas’, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), 387–409.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mathematics Subject Classifications (2000)

4FD0F, 60H10.

Feng-Yu Wang: Supported in part by the DFG through the Forschergruppe “Spectral Analysis, Asymptotic Distributions and Stochastic Dynamics”, the BiBoS Research Centre, NNSFC(10121101), and RFDP(20040027009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röckner, M., Wang, FY. Functional Inequalities for Particle Systems on Polish Spaces. Potential Anal 24, 223–243 (2006). https://doi.org/10.1007/s11118-005-0913-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-005-0913-6

Keywords

Navigation