Skip to main content
Log in

On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the robust characteristic cone constraint qualification. We also give an example to illustrate the obtained results in an important special case, namely the robust semi-infinite multi-objective convex second-order cone program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robustness, in Handbook on Semidefinite Programming. Kluwer, New York (2000)

    MATH  Google Scholar 

  2. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimzation. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  3. Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32, 510–516 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldfarb, D., Iyengar, G.: Robust convex quadratically constrained programs. Math. Program. 97, 495–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Govil, M.G., Mehra, A.: \(\epsilon \)-Optimality for multi-objective programming on a Banach space. Eur. J. Oper. Res. 157, 106–112 (2004)

    Article  MATH  Google Scholar 

  6. Gutiérrez, C., Jiménez, B., Novo, V.: Multiplier rules and saddle-point theorems for Helbig’s approximate solutions in convex Pareto problems. J. Glob. Optim. 32, 367–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamel, A.: An \(\epsilon \)-Lagrange multiplier rule for a mathematical programming problem on Banach spaces. Optimization 49, 137–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeyakumar, V., Li, G.Y.: Strong duality in robust semi-definite linear programming under data uncertainty. Optimization 63, 713–733 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, J.H., Jiao, L.G.: On quasi \(\epsilon \)-solution for robust convex optimization problems. Optim. Lett. 11, 1609–1622 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, J.H., Lee, G.M.: \(\epsilon \)-Duality theorems for convex semidefinite optimization problems with conic constraints. J. Inequal. Appl. 2010, 363012 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, J.H., Lee, G.M.: On \(\epsilon \)-solutions for convex optimization problems with uncertainty data. Positivity 16, 509–526 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, J.H., Lee, G.M.: On \(\epsilon \)-solutions for robust fractional optimization problems. J. Inequal. Appl. 2014, 501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, J.H., Lee, G.M.: On optimality conditions and duality theorems for robust semi-infinite multi-objective optimization problems. Ann. Oper. Res. 269, 419–438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, J.H., Lee, G.M.: On approximate solutions for robust convex semidefinite optimization problems. Positivity 22, 419–438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, J.H., Lee, G.M.: On \(\epsilon \)-solutions for robust semi-infinite optimization problems. Positivity 23, 651–669 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, J.C.: \(\epsilon \)-Duality theorem of nondifferentiable nonconvex multi-objective programming. J. Optim. Theory Appl. 69, 153–167 (1991)

    Article  MathSciNet  Google Scholar 

  17. Liu, J.C.: \(\epsilon \)-Pareto optimality for nondifferentiable multi-objective programming via penalty function. J. Math. Anal. Appl. 198, 248–261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arutyunov, A., Polyak, B.T., Mordukhovich, B.S.: Variational analysis and generalized differentiation I. Basic theory, II. Applications. Autom. Remote Control 70, 1086–1087 (2009)

    Article  Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II. Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  20. Strodiot, J.J., Nguyen, V.H., Heukemes, N.: \(\epsilon \)-Optimal solutions in nondifferentiable convex programming and some related question. Math. Program. 25, 307–328 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yokoyama, K.: Epsilon approximate solutions for multi-objective programming problems. J. Math. Anal. Appl. 203, 142–149 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmieta, S., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. Ser. A 96, 409–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior point algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alzalg, B.: A primal-dual interior-point method based on various selections of displacement step for symmetric optimization. Comput. Optim. Appl. 72, 363–390 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alzalg, B., Ariyawansa, K.A.: Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming. J. Math. Anal. Appl. 409, 973–995 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Alzalg, B.: Combinatorial and Algorithmic Mathematics: From Foundation to Optimization, 1st edn. Kindle Direct Publishing, Seattle, WA (2022)

    Google Scholar 

  27. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alzalg, B.: Stochastic second-order cone programming: application models. Appl. Math. Model. 36, 5122–5134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Alzalg, B., Badarneh, K., Ababneh, A.: Infeasible interior-point algorithm for stochastic second-order cone optimization. J. Optim. Theory Appl. 181, 324–346 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Alzalg, B.: A logarithmic barrier interior-point method based on majorant functions for second-order cone programming. Optim. Lett. 14, 729–746 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ariyawansa, K., Zhu, Y.: A class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programming. Math. Comput. 80, 1639–1661 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nesterov, Yu.E., Nemirovskii, A.S.: Conic formulation of a convex programming problem and duality. Optim. Methods Softw. 1, 95–115 (1992)

    Article  Google Scholar 

  35. Jeyakumar, V., Lee, G.M., Dinh, N.: Characterization of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174, 1380–1395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms, vol. I and II. Springer, Berlin (1993)

    MATH  Google Scholar 

  37. Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14, 534–547 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrainted optimization. SIAM. J. Optim. 19, 163–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Goberna, M.A., Jeyakumar, V., Li, G., López, M.A.: Robust linear semi-infinite programming duality under uncertainty. Math. Program. 139(1–2), 185–203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Yifan Dou from the Ohio State University for reading the manuscript and pointing out misprints. The authors also thank the two anonymous expert referees for their valuable suggestions from which the paper has benefited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baha Alzalg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzalg, B., Oulha, A.A. On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization. Positivity 26, 86 (2022). https://doi.org/10.1007/s11117-022-00952-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11117-022-00952-8

Keywords

Mathematics Subject Classification

Navigation