CimpriČ, J.: A representation theorem for Archimedean quadratic modules on \(*\)-rings. Can. Math. Bull. 52(1), 39–52 (2009)
MathSciNet
Article
Google Scholar
CimpriČ, J.: Real algebraic geometry for matrices over commutative rings. J. Algebra 359, 89–103 (2012)
MathSciNet
Article
Google Scholar
CimpriČ, J., Zalar, A.: Moment problems for operator polynomials. J. Math. Anal. Appl. 401(1), 307–316 (2013)
MathSciNet
Article
Google Scholar
Dickinson, P.J.C., Povh, J.: On an extension of Pólya’s Positivstellensatz. J. Glob. Optim. 61, 615–625 (2015)
Article
Google Scholar
Du, T.H.B.: A note on Positivstellensätze for matrix polynomials. East-West J. Math. 19(2), 171–182 (2017)
MathSciNet
Google Scholar
Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pac. J. Math. 132, 35–62 (1988)
MathSciNet
Article
Google Scholar
Jakubovich, V.A.: Factorization of matrix polynomials. Dokl. Acad. Nauk. 194, 532–535 (1970)
MathSciNet
Google Scholar
Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of Hermitian squares. Indiana Univ. Math. J. 59(3), 857–874 (2010)
MathSciNet
Article
Google Scholar
Krivine, J.-L.: Anneaux préordonnés (French). J. Anal. Math. 12, 307–326 (1964)
Article
Google Scholar
Krivine, J.-L.: Quelques propriétés des préordres dans les anneaux commutatifs unitaires (French). C. R. Acad. Sci. Paris 258, 3417–3418 (1964)
MathSciNet
MATH
Google Scholar
Lê, C.-T.: Some Positivstellensätze for polynomial matrices. Positivity 19(3), 213–228 (2015)
MATH
Google Scholar
Lê, C.-T., Du, T.H.B.: Handelman’s Positivstellensatz for polynomial matrices positive definite on polyhedra. Positivity 22(3), 449–460 (2018)
MathSciNet
Article
Google Scholar
Marshall, M.: Approximating positive polynomials using sums of squares. Can. Math. Bull. 46(3), 400–418 (2003)
MathSciNet
Article
Google Scholar
Pólya, G.: Über positive Darstellung von Polynomen. Vierteljahresschrift der Naturforschenden Gen. in Zürich 73, 141–145 (1928)
Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)
MathSciNet
Article
Google Scholar
Putinar, M., Vasilescu, F.-H.: Solving moment problems by dimensional extension. Ann. Math. (2) 149(3), 1087–1107 (1999)
MathSciNet
Article
Google Scholar
Scheiderer, C.: Sums of squares on real algebraic curves. Math. Z. 245, 725–760 (2003)
MathSciNet
Article
Google Scholar
Scheiderer, C.: Distinguished representations of non-negative polynomials. J. Algebra 289, 558–573 (2005)
MathSciNet
Article
Google Scholar
Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Progr. Ser. B 107(1–2), 189–211 (2006)
MathSciNet
Article
Google Scholar
Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory. Birkhäuser, Basel (1990)
Book
Google Scholar
Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(1), 203–206 (1991)
MathSciNet
Article
Google Scholar
Schmüdgen, K.: A strict Positivstellensatz for the Weyl algebra. Math. Ann. 331, 779–794 (2005)
MathSciNet
Article
Google Scholar
Schmüdgen, K.: Noncommutative real algebraic geometry - some basic concepts and first ideas. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149, pp. 325–350. Springer, New York (2009)
Schmüdgen, K.: The Moment Problem. Springer, New York (2017)
Book
Google Scholar
Schweighofer, M.: Global Optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17(3), 920–942 (2006)
MathSciNet
Article
Google Scholar
Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)
MathSciNet
Article
Google Scholar