Abstract
It is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier–Laplace transform of a unique exponentially finite measure on \({{\mathbb {R}}}\). In this paper we apply this complex integral representation to specific families of special functions, including the \(\Gamma \), \(\zeta \) and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the \(\zeta \) function this process leads to a new proof of an integral representation on the critical strip.
Similar content being viewed by others
References
Askey, R.: Grünbaum’s inequality for Bessel functions. J. Math. Anal. Appl. 293, 122–124 (1973)
Baricz, A.: Generalized Bessel Functions of the First Kind, vol. 1994. Springer, Berlin (2010)
Berg, C., Christensen, J., Ressel, P.: Harmonic Analysis on Semigroups, vol. 100. Springer, New York (1984)
Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)
Bisgaard, T., Sasvàri, Z.: Characteristic Functions and Moment Problems. Nova Science Publishing, New York (2000)
Buescu, J., Paixão, A.: Positive definite matrices and integral equations on unbounded domains. Differ. Integr. Equ. 19(2), 189–210 (2006)
Buescu, J., Paixão, A., Garcia, F., Lourtie, I.: Positive-definiteness, integral equations and Fourier transforms. J. Integr. Equ. Appl. 16(1), 33–52 (2004)
Buescu, J., Paixão, A.: A linear algebraic approach to holomorphic reproducing kernels in ${{\mathbb{C}}}^n$. Linear Algebra Appl. 412(2–3), 270–290 (2006)
Buescu, J., Paixão, A.: Positive definite matrices and differentiable reproducing kernel inequalities. J. Math. Anal. Appl. 320, 279–292 (2006)
Buescu, J., Paixão, A.: On differentiability and analyticity of positive definite functions. J. Math. Anal. Appl. 375(1), 336–341 (2011)
Buescu, J., Paixão, A.: Real and complex variable positive definite functions. São Paulo J. Math. Sci. 6(2), 155–169 (2012)
Buescu, J., Paixão, A.: Complex variable positive definite functions. Complex Anal. Oper. Theory 8(4), 937–954 (2014)
Buescu, J., Paixão, A., Symeonides, A.: Complex positive definite functions on strips. Complex Anal. Oper. Theory 11(3), 627–649 (2017)
Buescu, J., Paixão, A., Oliveira, C.: Propagation of regularity and positive definiteness: a constructive approach. Z. Anal. Anwend. 37(1), 1–24 (2018)
Devinatz, A.: Integral representations of positive definite functions. Trans. Am. Math. Soc. 74, 56–77 (1953)
Devinatz, A.: Integral representations of positive definite functions II. Trans. Am. Math. Soc. 77, 455–480 (1954)
Donoghue, W.: Distributions and Fourier Transforms. Academic Press, New York (1969)
Ehm, W., Genton, M., Gneiting, T.: Stationary covariances associated with exponentially convex functions. Bernoulli 9(4), 607–615 (2003)
El Kamel, J., Mehrez, K.: A function class of strictly positive definite and logarithmically completely monotonic functions related to the modified Bessel functions. Positivity 22(5), 1403–1417 (2018)
Graczyk, P., Loeb, J.: Bochner and Schoenberg theorems on symmetric spaces in the complex case. Bull. Soc. Math. France 122(4), 571–590 (1994)
Jorgensen, P., Niedzialomski, R.: Extension of positive definite functions. J. Math. Anal. Appl. 422(1), 712–740 (2015)
Jorgensen, P., Pedersen, S., Tian, F.: Feng Extensions of Positive Definite Functions. Applications and Their Harmonic Analysis. Lecture Notes in Mathematics, vol. 2160. Springer, New York (2016)
Kosaki, H.: Positive definiteness of functions with applications to operator norm inequalities. Mem. Am. Math. Soc. 212, 997 (2011)
Lax, P.: Functional Analysis. Wiley, New York (2002)
Loeb, J., Youssfi, E.: Fonctions holomorphes définies positives sur les domaines tubes. C. R. Math. Acad. Sci. Paris 343(2), 87–90 (2006)
Lukacs, E.: Characteristic Functions, 2nd edn. Griffin and Co., Helsinki (1970)
Neuman, E.: Inequalities involving Bessel functions of the first kind. J. Inequal. Pure Appl. Mat 5(4), article 94, 4pgs (electronic)
Rudin, W.: Fourier Analysis on Groups. Interscience Publishers, Wiley (1962)
Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mt. J. Math. 6(3), 409–434 (1976)
Sasvàri, Z.: Positive Definite and Definitizable Functions. Mathematical Topics, vol. 2. Akademie Verlag, Berlin (1994)
Sasvàri, Z.: Multivariate Characteristic and Correlation Functions. De Gruyter Studies in Mathematics, vol. 50. Walter de Gruyter & Co., Berlin (2013)
Selinger, V.: Geometric properties of normalized Bessel functions. Pure Math. Appl. 6, 273–277 (1995)
Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, Oxford (1986)
Watson, G.: A Treatise on the Theory of Bessel Functions. Cambridge U. P, Cambridge (1944)
Whittaker, E., Watson, G.: A Course in Modern Analysis, 4th edn. Cambridge U. P, Cambridge (1996)
Widder, D.: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Am. Math. Soc. 40(4), 321–326 (1934)
Youssfi, E.: Harmonic analysis on conelike bodies and holomorphic functions on tube domains. J. Funct. Anal. 155(2), 381–435 (1998)
Zastavnyi, V.: On positive definiteness of some functions. J. Multivar. Anal. 73, 55–81 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The first author acknowledges partial support by Fundação para a Ciência e Tecnologia, UID/MAT/04561/2019.
Rights and permissions
About this article
Cite this article
Buescu, J., Paixão, A.C. Positive-definiteness and integral representations for special functions. Positivity 25, 731–750 (2021). https://doi.org/10.1007/s11117-020-00784-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11117-020-00784-4
Keywords
- Positive definite functions
- Fourier–Laplace transform
- Characteristic functions
- Holomorphy
- Gamma function
- Zeta function
- Exponentially convex functions