Skip to main content
Log in

Positive-definiteness and integral representations for special functions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

It is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier–Laplace transform of a unique exponentially finite measure on \({{\mathbb {R}}}\). In this paper we apply this complex integral representation to specific families of special functions, including the \(\Gamma \), \(\zeta \) and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the \(\zeta \) function this process leads to a new proof of an integral representation on the critical strip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Askey, R.: Grünbaum’s inequality for Bessel functions. J. Math. Anal. Appl. 293, 122–124 (1973)

    Article  MATH  Google Scholar 

  2. Baricz, A.: Generalized Bessel Functions of the First Kind, vol. 1994. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  3. Berg, C., Christensen, J., Ressel, P.: Harmonic Analysis on Semigroups, vol. 100. Springer, New York (1984)

    Book  MATH  Google Scholar 

  4. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bisgaard, T., Sasvàri, Z.: Characteristic Functions and Moment Problems. Nova Science Publishing, New York (2000)

    MATH  Google Scholar 

  6. Buescu, J., Paixão, A.: Positive definite matrices and integral equations on unbounded domains. Differ. Integr. Equ. 19(2), 189–210 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Buescu, J., Paixão, A., Garcia, F., Lourtie, I.: Positive-definiteness, integral equations and Fourier transforms. J. Integr. Equ. Appl. 16(1), 33–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buescu, J., Paixão, A.: A linear algebraic approach to holomorphic reproducing kernels in ${{\mathbb{C}}}^n$. Linear Algebra Appl. 412(2–3), 270–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buescu, J., Paixão, A.: Positive definite matrices and differentiable reproducing kernel inequalities. J. Math. Anal. Appl. 320, 279–292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buescu, J., Paixão, A.: On differentiability and analyticity of positive definite functions. J. Math. Anal. Appl. 375(1), 336–341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buescu, J., Paixão, A.: Real and complex variable positive definite functions. São Paulo J. Math. Sci. 6(2), 155–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buescu, J., Paixão, A.: Complex variable positive definite functions. Complex Anal. Oper. Theory 8(4), 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buescu, J., Paixão, A., Symeonides, A.: Complex positive definite functions on strips. Complex Anal. Oper. Theory 11(3), 627–649 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buescu, J., Paixão, A., Oliveira, C.: Propagation of regularity and positive definiteness: a constructive approach. Z. Anal. Anwend. 37(1), 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Devinatz, A.: Integral representations of positive definite functions. Trans. Am. Math. Soc. 74, 56–77 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  16. Devinatz, A.: Integral representations of positive definite functions II. Trans. Am. Math. Soc. 77, 455–480 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoghue, W.: Distributions and Fourier Transforms. Academic Press, New York (1969)

    MATH  Google Scholar 

  18. Ehm, W., Genton, M., Gneiting, T.: Stationary covariances associated with exponentially convex functions. Bernoulli 9(4), 607–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. El Kamel, J., Mehrez, K.: A function class of strictly positive definite and logarithmically completely monotonic functions related to the modified Bessel functions. Positivity 22(5), 1403–1417 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Graczyk, P., Loeb, J.: Bochner and Schoenberg theorems on symmetric spaces in the complex case. Bull. Soc. Math. France 122(4), 571–590 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jorgensen, P., Niedzialomski, R.: Extension of positive definite functions. J. Math. Anal. Appl. 422(1), 712–740 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jorgensen, P., Pedersen, S., Tian, F.: Feng Extensions of Positive Definite Functions. Applications and Their Harmonic Analysis. Lecture Notes in Mathematics, vol. 2160. Springer, New York (2016)

    Book  MATH  Google Scholar 

  23. Kosaki, H.: Positive definiteness of functions with applications to operator norm inequalities. Mem. Am. Math. Soc. 212, 997 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Lax, P.: Functional Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  25. Loeb, J., Youssfi, E.: Fonctions holomorphes définies positives sur les domaines tubes. C. R. Math. Acad. Sci. Paris 343(2), 87–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lukacs, E.: Characteristic Functions, 2nd edn. Griffin and Co., Helsinki (1970)

    MATH  Google Scholar 

  27. Neuman, E.: Inequalities involving Bessel functions of the first kind. J. Inequal. Pure Appl. Mat 5(4), article 94, 4pgs (electronic)

  28. Rudin, W.: Fourier Analysis on Groups. Interscience Publishers, Wiley (1962)

    MATH  Google Scholar 

  29. Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mt. J. Math. 6(3), 409–434 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sasvàri, Z.: Positive Definite and Definitizable Functions. Mathematical Topics, vol. 2. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  31. Sasvàri, Z.: Multivariate Characteristic and Correlation Functions. De Gruyter Studies in Mathematics, vol. 50. Walter de Gruyter & Co., Berlin (2013)

    Book  MATH  Google Scholar 

  32. Selinger, V.: Geometric properties of normalized Bessel functions. Pure Math. Appl. 6, 273–277 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  34. Watson, G.: A Treatise on the Theory of Bessel Functions. Cambridge U. P, Cambridge (1944)

    MATH  Google Scholar 

  35. Whittaker, E., Watson, G.: A Course in Modern Analysis, 4th edn. Cambridge U. P, Cambridge (1996)

    Book  MATH  Google Scholar 

  36. Widder, D.: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Am. Math. Soc. 40(4), 321–326 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  37. Youssfi, E.: Harmonic analysis on conelike bodies and holomorphic functions on tube domains. J. Funct. Anal. 155(2), 381–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zastavnyi, V.: On positive definiteness of some functions. J. Multivar. Anal. 73, 55–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Buescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author acknowledges partial support by Fundação para a Ciência e Tecnologia, UID/MAT/04561/2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buescu, J., Paixão, A.C. Positive-definiteness and integral representations for special functions. Positivity 25, 731–750 (2021). https://doi.org/10.1007/s11117-020-00784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-020-00784-4

Keywords

Mathematics Subject Classification

Navigation