Skip to main content
Log in

Extensions of the Lax–Milgram theorem to Hilbert \(C^*\)-modules

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We present three versions of the Lax–Milgram theorem in the framework of Hilbert \(C^*\)-modules, two for self-dual ones over \(W^*\)-algebras and one for those over \(C^*\)-algebras of compact operators. It is remarkable that while the Riesz theorem is not valid for certain Hilbert \(C^*\)-modules over \(C^*\)-algebras of compact operators, however, the modular Lax–Milgram theorem turns out to be valid for all of them. We also give several examples to illustrate our results, in particular, we show that the main theorem is not true for Hilbert modules over arbitrary \(C^*\)-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, W.: An Invitation to \(C^*\)-algebras. Springer, New York (1976)

    Book  Google Scholar 

  2. Bakić, D., Guljaš, B.: Extensions of Hilbert \(C^*\)-modules, I. Houst. J. Math. 30, 537–558 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Bakić, D., Guljaš, B.: On a class of module maps of Hilbert \(C^*\)-modules. Math. Commun. 7, 177–192 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Brown, L.G.: Stable isomorphism of hereditary subalgebras of \(C^*\)-algebras. Pac. J. Math. 71, 335–348 (1971)

    Article  MathSciNet  Google Scholar 

  5. Drivaliaris, D., Yannakakis, N.: Generalizations of the Lax–Milgram theorem. Bound. Value Probl. (2007). Art. ID 87104

  6. Frank, M.: Geometrical aspects of Hilbert \(C^*\)-modules. Positivity 3, 215–243 (1999)

    Article  MathSciNet  Google Scholar 

  7. Frank, M.: Characterizing \(C^*\)-algebras of compact operators by generic categorical properties of Hilbert \(C^*\)-modules. J. K-Theory 2, 453–462 (2008)

    Article  MathSciNet  Google Scholar 

  8. Garetto, C., Vernaeve, H.: Hilbert \(\widetilde{\mathbb{C}}\)-modules: structural properties and applications to variational problems. Trans. Am. Math. Soc. 363(4), 2047–2090 (2011)

    Article  MathSciNet  Google Scholar 

  9. Kozono, H., Yanagisawa, T.: Generalized Lax-Milgram theorem in Banach spaces and its application to the elliptic system of boundary value problems. Manuscr. Math. 141(3–4), 637–662 (2013)

    Article  MathSciNet  Google Scholar 

  10. Lance, E.C.: Hilbert \(C^*\)-modules. A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge (1995)

  11. Lax, P.D., Milgram, A.N.: Parabolic Equations, Contributions to the Theory of Partial Differential Equations, pp. 167–190. Annals of Mathematics Studies, no. 33. Princeton University Press, Princeton (1954)

  12. Lin, H.: Injective Hilbert \(C^\ast \)-modules. Pac. J. Math. 154(1), 131–164 (1992)

    Article  MathSciNet  Google Scholar 

  13. Levere, K.M., Kunze, H., La Torre, D.: A collage-based approach to solving inverse problems for second-order nonlinear parabolic PDEs. J. Math. Anal. Appl. 406(1), 120–133 (2013)

    Article  MathSciNet  Google Scholar 

  14. Manuilov, V.M., Troitsky, E.V.: Hilbert \(C^*\)-modules. In: Translations of Mathematical Monographs, vol. 226, American Mathematical Society, Providence (2005)

  15. Murphy, G.J.: \(C^*\)-Algebras and Operator Theory. Academic Press, London (1990)

    MATH  Google Scholar 

  16. Paschke, W.L.: Inner Product modules over \(B^*-\)algebras. Trans. Am. Math. Soc. 182, 443–468 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Ramaswamy, S.: The Lax–Milgram theorem for Banach spaces II. Proc. Jpn. Acad. Ser. A Math. Sci. 57(1), 29–33 (1981)

    Article  MathSciNet  Google Scholar 

  18. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  19. Ruiz, G.M.: A version of the Lax–Milgram theorem for locally convex spaces. J. Convex Anal. 16(3–4), 993–1002 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Saint Raymond, J.: A generalization of Lax–Milgram’s theorem. Matematiche (Catania) 52 (1997), no. 1, 149–157 (1998)

  21. Schweizer, J.: A description of Hilbert \(C^*\)-modules in which all closed submodules are orthogonally closed. Proc. Am. Math. Soc. 127, 2123–2125 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sal Moslehian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, R., Frank, M., Manuilov, V.M. et al. Extensions of the Lax–Milgram theorem to Hilbert \(C^*\)-modules. Positivity 24, 1169–1180 (2020). https://doi.org/10.1007/s11117-019-00726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-019-00726-9

Keywords

Mathematics Subject Classification

Navigation