Skip to main content
Log in

Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper the stability and the perturbation bounds of Markov operators acting on abstract state spaces are investigated. Here, an abstract state space is an ordered Banach space where the norm has an additivity property on the cone of positive elements. We basically study uniform ergodic properties of Markov operators by means of so-called a generalized Dobrushin’s ergodicity coefficient. This allows us to get several convergence results with rates. Some results on quasi-compactness of Markov operators are proved in terms of the ergodicity coefficient. Furthermore, a characterization of uniformly P-ergodic Markov operators is given which enable us to construct plenty examples of such types of operators. The uniform mean ergodicity of Markov operators is established in terms of the Dobrushin ergodicity coefficient. The obtained results are even new in the classical and quantum settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekhno, E.A.: Some properties of essential spectra of a positive pperator. Positivity 11, 375–386 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Alfsen, E.M.: Compact Convex Sets and Booundary Integrals. Springer, Berlin (1971)

    MATH  Google Scholar 

  3. Arlotti, L., Lods, B., Mokhtar-Kharroubi, M.: On perturbed stochastic semigroups on abstract state spaces. Z. Anal. Anwend. 30, 457–495 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Bartoszek, W.: Norm residuality of ergodic operators. Bull. Pol. Acad. Sci. Math. 29, 165–167 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Bartoszek, W.: Asymptotic properties of iterates of stochastic operators on (AL) Banach lattices. Anal. Polon. Math. 52, 165–173 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Bartoszek, W., Kuna, B.: On residualities in the set of Markov operators on \(C_1\). Proc. Am. Math. Soc. 133, 2119–2129 (2005)

    MATH  Google Scholar 

  7. Cohen, J.E., Iwasa, Y., Rautu, G., Ruskai, M.B., Seneta, E., Zbaganu, G.: Relative entropy under mappings by stochastic matrices. Linear Algebra Appl. 179, 211–235 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Conde-Alonso, J.M., Parcet, J., Ricard, E.: On spectral gaps of Markov maps. Isr. J. Math. 226, 189–203 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Dobrushin, R.L.: Central limit theorem for nonstationary Markov chains. I, II. Theor. Probab. Appl. 1, 65–80 (1956). 329–383

    MathSciNet  Google Scholar 

  10. Dorea, C.C.Y., Pereira, A.G.C.: A note on a variation of Doeblin’s condition for uniform ergodicity of Markov chains. Acta Math. Hungar. 10, 287–292 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Emel’yanov, EYu.: Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  12. Emel’yanov, E.Y., Wolff, M.P.H.: Asymptotic behavior of Markov semigroups on non-commutative \(L_1\)-spaces. In: Quantum Probability and Infinite Dimensional Analysis (Burg, 2001), QP–PQ: Quantum Probability White Noise Analysis, 15, pp. 77–83. World Sci. Publishing, River Edge, NJ, (2003)

  13. Erkursun-Ozcan, N., Mukhamedov, F.: Uniform ergodicities and perturbation bounds of Markov chains on ordered Banach spaces. J. Phys.: Conf. Ser. 819, 012015 (2017)

    MathSciNet  Google Scholar 

  14. Erkursun-Ozcan, N., Mukhamedov, F.: Uniform ergodicities and perturbation bounds of Markov chains on ordered Banach spaces. Quaest. Math. 41(6), 863–876 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Gaubert, S., Qu, Z.: Dobrushin’s ergodicity coefficient for Markov operators on cones and beyond. Integr. Equ. Oper. Theory 81, 127–150 (2014)

    MATH  Google Scholar 

  16. Glück, J.: On the peripheral spectrum of positive operators. Positivity 20, 307–336 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Halmos, P.R.: Lectures on Ergodic Theory. Chelsea, New York (1960)

    MATH  Google Scholar 

  18. Hartfiel, D.J.: Coefficients of ergodicity for imprimitive marices. Commun. Statist. Stoch. Models 15, 81–88 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Hartfiel, D.J., Rothblum, U.G.: Convergence of inhomogeneous products of matrices and coefficients of ergodicity. Linear Algebra Appl. 277, 1–9 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Hennion, H., Harve, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness. Lecture Notes on Mathematics, vol. 1766. Springer, Berlin (2001)

    Google Scholar 

  21. Ipsen, I.C.F., Salee, T.M.: Ergodicity coefficients defined by vector norms. SIAM J. Matrix Anal. Appl. 32, 153–200 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Iwanik, A.: Baire category of mixing for stochastic operators. Rend. Circ. Mat. Palermo Ser. II 28, 201–217 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Jachymski, J.: Convergence of iterates of linear operators and the Kelisky–Rivlin type theorems. Studia Math. 195, 99–113 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Jameson, G.: Ordered Linear Spaces. Lecture Notes on Mathematics V, vol. 141. Springer, Berlin (1970)

    MATH  Google Scholar 

  25. Kontoyiannis, I., Meyn, S.P.: Geometric ergodicity and the spectral gap of non-reversible Markov chains. Probab. Theory Relat. Fields 154, 327–339 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)

    MATH  Google Scholar 

  27. Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)

    MathSciNet  MATH  Google Scholar 

  28. Lin, M.: On quasi compact Markov operators. Ann. Probab. 2, 464–475 (1974)

    MathSciNet  MATH  Google Scholar 

  29. Lin, M., Shoikhet, D., Suciu, L.: Remarks on uniform ergodic theorems. Acta Sci. Math. (Szeged) 81, 251–283 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Mbekhta, M., Zemanek, J.: Sur le theoreme ergodique uniforme et le spectre. C. R. Acad. Sci. Pais Ser. I Math. 317, 1155–1158 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Berlin (1996)

    MATH  Google Scholar 

  32. Mitrophanov, A.: Sensitivity and convergence of uniform ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Mitrophanov, A.: Stability estimates for finite homogeneous continuous-time Markov chains. Theory Probab. Appl. 50(2), 319–326 (2006)

    MathSciNet  Google Scholar 

  34. Mukhamedov, F.: Dobrushin ergodicity coefficient and ergodicity of noncommutative Markov chains. J. Math. Anal. Appl. 408, 364–373 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Mukhamedov, F.: On \(L_1\)-weak ergodicity of non-homogeneous discrete Markov processes and its applications. Rev. Mat. Comput. 26, 99–813 (2013)

    Google Scholar 

  36. Mukhamedov, F.: Ergodic properties of nonhomogeneous Markov chains defined on ordered Banach spaces with a base. Acta. Math. Hungar. 147, 294–323 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Mukhamedov, F.: Strong and weak ergodicity of nonhomogeneous Markov chains defined on ordered Banach spaces with a base. Positivity 20, 135–153 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Munoz, G.A., Sarantopoulos, Y., Tonge, A.: Complexification of real Banach spaces, polynomials and multilinear maps. Studia Math. 134, 1–33 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Nummelin, E.: General Irreducible Markov Chains and Non-negative Operators. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  40. Rabiger, F.: Stability and ergodicity of dominated semigroups, I. The uniform case. Math. Z. 214, 43–53 (1993)

    MathSciNet  MATH  Google Scholar 

  41. Sarymsakov, T.A., Zimakov, N.P.: Ergodic principle for Markov semi-groups in ordered normal spaces with basis. Dokl. Akad. Nauk. SSSR 289, 554–558 (1986)

    MathSciNet  Google Scholar 

  42. Seneta, E.: Non-negative Matrices and Markov Chains. Springer, Berlin (2006)

    MATH  Google Scholar 

  43. Szehr, O., Wolf, M.M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54, 032203 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Tomilov, Y., Zemanek, J.: A new way of constructing examples in operator ergodic theory. Math. Proc. Cambr. Philos. Soc. 137, 209–225 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Wong, Y.C., Ng, K.F.: Partially Ordered Topological Vector Spaces. Clarendon Press, Oxford (1973)

    MATH  Google Scholar 

  46. Yost, D.: A base norm space whose cone is not 1-generating. Glasg. Math. J. 25, 35–36 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thanks Dr. Ho Hon Leung for his help in checking the text of this paper. The authors would like to thank an anonymous referee whose useful suggestions allowed us to improve the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Al-Rawashdeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F., Al-Rawashdeh, A. Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators. Positivity 24, 855–890 (2020). https://doi.org/10.1007/s11117-019-00713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-019-00713-0

Keywords

Mathematics Subject Classification

Navigation