Skip to main content
Log in

Characterization of numerical radius parallelism in \(C^*\)-algebras

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let v(x) denote the numerical radius of an element x in a \(C^*\)-algebra \(\mathfrak {A}\). First, we prove several numerical radius inequalities in \(\mathfrak {A}\). Particularly, we show that if \(x\in \mathfrak {A}\), then \(v(x) = \frac{1}{2}\Vert x\Vert \) if and only if \(\Vert x\Vert = \Vert \text{ Re }(e^{i\theta }x)\Vert + \Vert \text{ Im }(e^{i\theta }x)\Vert \) for all \(\theta \in \mathbb {R}\). In addition, we present a refinement of the triangle inequality for the numerical radius in \(C^*\)-algebras. Among other things, we introduce a new type of parallelism in the setting of \(C^*\)-algebras based on the notion of numerical radius. More precisely, an element \(x\in \mathfrak {A}\) is called the numerical radius parallel to another element \(y \in \mathfrak {A}\), denoted by \(x\,{\parallel }_v \,y\), if \(v(x + \lambda x) = v(x) + v(y)\) for some complex unit \(\lambda \). We show that this relation can be characterized in terms of pure states acting on \(\mathfrak {A}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Omar, A., Kittaneh, F.: Upper and lower bounds for the numerical radius with an application to involution operators. Rocky Mt. J. Math. 45(4), 1055–1064 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu-Omar, A., Kittaneh, F.: Notes on some spectral radius and numerical radius inequalities. Studia Math. 227(2), 97–109 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albideewi, A.F., Mabrouk, M.: On maps compressing the numerical range between \(C^*\)-algebras. Adv. Oper. Theory 2, 108–113 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Blackadar, B.: Operator algebras: theory of \(C^*\)-algebras and von Neumann algebras. In: Operator Algebras and Non-commutative geometry, III. vol. 122, Encyclopaedia of Mathematical sciences. Springer, Berlin (2006)

  5. Bonsall, F.F., Duncan, J.: Numerical ranges of operators on normed spaces and elements of normed algebras, vol. 2, London Mathematical Society Lecture Note Series. Cambridge University Press, London (1971)

  6. Bourhim, A., Mabrouk, M.: Numerical radius and product of elements in \(C^*\)-algebras. Linear Multilinear Algebra 65(6), 1108–1116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chien, M.T., Nakazato, H.: Computation of Riemann matrices for the hyperbolic curves of determinantal polynomials. Ann. Funct. Anal. 8(2), 152–167 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixmier, J.: \(C^*\)-Algebras. Amsterdam, North-Holland (1981)

    MATH  Google Scholar 

  9. Gustafson, K.E., Rao, D.K.M.: Numerical range. The Field of Values of Linear Operators and Matrices, Universitext. Springer, New York (1997)

    Google Scholar 

  10. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  11. Ji, Y., Liang, B.: On operators with closed numerical ranges. Ann. Funct. Anal. 9(2), 233–245 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Studia Math. 168(1), 73–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kittaneh, F.: Spectral radius inequalities for Hilbert space operators. Proc. Am. Math. Soc. 134, 385–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kittaneh, F., Moslehian, M.S., Yamazaki, T.: Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 471, 46–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Seddik, A.: Rank one operators and norm of elementary operators. Linear Algebra Appl. 424, 177–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Werner, D.: An elementary approach to the Daugavet equation, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994), 449–454, Lecture Notes in Pure and Appl. Math., 175, Dekker, New York (1996)

  17. Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition. Studia Math. 178(1), 83–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zamani, A.: Some lower bounds for the numerical radius of Hilbert space operators. Adv. Oper. Theory 2, 98–107 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Zamani, A., Moslehian, M.S.: Exact and approximate operator parallelism. Can. Math. Bull. 58(1), 207–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for her/his valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, A. Characterization of numerical radius parallelism in \(C^*\)-algebras. Positivity 23, 397–411 (2019). https://doi.org/10.1007/s11117-018-0613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-018-0613-2

Keywords

Mathematics Subject Classification

Navigation