, Volume 22, Issue 5, pp 1241–1254 | Cite as

Approximation with arbitrary order by certain linear positive operators

  • Octavian AgratiniEmail author


This paper aims to highlight classes of linear positive operators of discrete and integral type for which the rates in approximation of continuous functions and in quantitative estimates in Voronovskaya type results are of an arbitrarily small order. The operators act on functions defined on unbounded intervals and we achieve the intended purpose by using a strictly decreasing positive sequence \((\lambda _n)_{n\ge 1}\) such that \(\lim \limits _{n\rightarrow \infty }\lambda _n=0\), how fast we want. Particular cases are presented.


Linear and positive operator Korovkin theorem Voronovskaya type theorems Modulus of continuity Order of approximation 

Mathematics Subject Classification

41A36 41A25 


  1. 1.
    Abel, U., Agratini, O.: Asymptotic behaviour of Jain operators. Numer. Algorithm 71(3), 553–565 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aral, A., Gonska, H., Heilmann, M., Tachev, G.: Quantitative Voronovskaya-type results for polynomially bounded functions. Results Math. 70, 313–324 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baskakov, V.A.: An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 113, 249–251 (1957). (in Russian)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bleimann, G., Butzer, P.L., Hahn, L.A.: Bernstein-type operators approximating continuous functions on the semiaxis. Indag. Math. 42, 255–262 (1980)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bohman, H.: On approximation of continuous and of analytic functions. Ark. Mat. 2(1952–1054), 43–56MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cetin, N., Ispir, N.: Approximation by complex modified Szász-Mirakjan operators. Studia Sci. Math. Hungar. 50(3), 355–372 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Deniz, E.: Quantitative estimates for Jain-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 65(2), 121–132 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation, Grundlehren der Mathematischen Wissenschaften 303. Springer, Berlin (1993)Google Scholar
  9. 9.
    Doğru, O., Mohapatra R. N., Örkü, M.: Approximation properties of generalized Jain operators. Filomat 30(1016), 2359-2366MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gal, S.G.: Approximation with an arbitrary order by generalized Szász-Mirakjan operators. Studia Univ. Babeş-Bolyai Math. 59(1), 77–81 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gal, S.G., Opriş, B.D.: Approximation with an arbitrary order by modified Baskakov type operators. Appl. Math. Comput. 265, 329–332 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gupta, V., Tachev, G.: General form of Voronovskaja’s theorem in terms of weighted modulus of continuity. Results Math. 69, 419–430 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ismail, M.E.H.: On a generalization of Szász operators. Mathematica (Cluj) 39, 259–267 (1974)zbMATHGoogle Scholar
  14. 14.
    Jain, G.C.: Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. 13(3), 271–276 (1972)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Korovkin, P.P.: On convergence of linear positive operators in space of continuous function. Dokl. Akad. Nauk SSSR (N.S.) 90, 961–964 (1953). (in Russian)MathSciNetGoogle Scholar
  16. 16.
    Mastroianni, G.: Su un operatore lineare e positivo. Rend. Acc. Sc. Fis. Mat. Napoli Serie IV 46, 161–176 (1979)zbMATHGoogle Scholar
  17. 17.
    Pǎltǎnea, R.: Estimates of approximation in terms of a weighted modulus of continuity. Bull. Transilvania Univ. Braşov 4(53), 67–74 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Shisha, O., Mond, B.: The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 60, 1196–1200 (1968)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Szász, O.: Generalization of S. Bernstein polynomials to the infinite interval. J. Res. Nat. Bur. Standards 45, 239–245 (1950)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Trifa, S.: Approximation with an arbitrary order by generalized Kantorovich-type and Durrmeyer-type operators on \([0 +\infty )\). Studia Univ. Babeş-Bolyai Math. (2017) 62(2) (in print)Google Scholar
  21. 21.
    Walczak, Z.: On approximation by modified Szász-Mirakjan operators. Glas. Mat. 37(57), 303–319 (2002)zbMATHGoogle Scholar
  22. 22.
    Walczak, Z.: On modified Szász-Mirakjan operators. Novi Sad J. Math. 33(1), 93–107 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Babeş-Bolyai University, Faculty of Mathematics and Computer ScienceCluj-NapocaRomania

Personalised recommendations