, Volume 22, Issue 5, pp 1197–1221 | Cite as

Power type asymptotically uniformly smooth and asymptotically uniformly flat norms

  • R. M. CauseyEmail author


We provide a short characterization of p-asymptotic uniform smoothability and asymptotic uniform flatenability of operators and of Banach spaces. We use these characterizations to show that many asymptotic uniform smoothness properties pass to injective tensor products of operators and of Banach spaces. In particular, we prove that the injective tensor product of two asymptotically uniformly smooth Banach spaces is asymptotically uniformly smooth. We prove that for \(1<p<\infty \), the class of p-asymptotically uniformly smoothable operators can be endowed with an ideal norm making this class a Banach ideal. We also prove that the class of asymptotically uniformly flattenable operators can be endowed with an ideal norm making this class a Banach ideal.


Szlenk index Operator ideals Ordinal ranks 

Mathematics Subject Classification

Primary 46B03 46B06 Secondary 46B28 47B10 


  1. 1.
    Baudier, F.: Metrical characterization of super-reflexivity and linear type of Banach spaces. Arch. Math. 89, 419–429 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baudier, F., Kalton, N., Lancien, G.: A new metric invariant for Banach spaces. Studia Math. 199, 73–94 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baudier, F., Zhang, S.: On the \((\beta )\) distortion of some infinite graphs. J. Lond. Math. Soc. 93(2), 481–502 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Besbes, M.: Points fixes dans les espaces des oprateurs nucléaires. Bull. Aust. Math. Soc. 46(2), 287–294 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bourgain, J.: The metrical interpretation of super-reflexivity in Banach spaces. Israel J. Math. 56, 221–230 (1986)CrossRefGoogle Scholar
  6. 6.
    Brooker, P.A.H.: Asplund operators and the Szlenk index. J. Oper. Theory 68, 405–442 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Causey, R.M.: Power type \(\xi \)-asymptotically uniformly smooth norms, to appear in Transactions of the American Mathematical Society.
  8. 8.
    Causey, R.M., Dilworth, S.J.: Metric characterizations of super weakly compact operators. Studia Math. 239, 175–188 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Causey, R.M., Dilworth, S.J.: \(\xi \)-asymptotically uniformly smooth, \(\xi \)-asymptotically uniformly convex, and \((\beta )\) operators. J. Funct. Anal. arXiv:1607.01362 (to appear)
  10. 10.
    Dilworth, S.J., Kutzarova, D.: Kadec-Klee properties for \(\cal{L}(\ell _p, \ell _q)\), Function spaces (Edwardsville, IL, 1994), Lecture Notes in Pure and Appl. Math., 172. Dekker, New York, 71–83 (1995)Google Scholar
  11. 11.
    Dilworth, S.J., Kutzarova, D., Lancien, G., Randrianarivony, L.: Equivalent norms with property \((\beta )\) of Rolewicz. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111(1), 101–113 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dilworth, S.J., Kutzarova, D., Randrianarivony, N.L., Revalski, J.P., Zhivkov, N.V.: Compactly uniformly convex spaces and property \((\beta )\) of Rolewicz. J. Math. Anal. Appl. 402(1), 297–307 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Draga, S., Kochanek, T.: The Szlenk power type and injective tensor products of Banach spaces. Proc. Amer. Math. Soc. 145, 1685–1698 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Freeman, D., Odell, E., Schlumprecht, Th, Zsák, A.: Banach spaces of bounded Szlenk index II. Fund. Math. 205, 161–177 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gale, D., Stewart, F.M.: Infinite games with perfect information, Contributions to the theory of games. Ann. of Math. Studies, No. 28, Princeton Univ. Press 245–266 (1953)Google Scholar
  16. 16.
    García-Lirola, L., Raja, M.: On strong asymptotic uniform smoothness and convexity. M. Rev Mat Complut (2017). MathSciNetCrossRefGoogle Scholar
  17. 17.
    Godefroy, G., Kalton, N., Lancien, G.: Szlenk indices and uniform homeomorphisms. Trans. Amer. Math. Soc. 353(1), 3895–3918 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Godefroy, G., Kalton, N., Lancien, G.: Subspaces of \(c_0(\mathbb{N})\) and Lipschitz isomorphisms. Geom. Funct. Anal. 10, 798–820 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Johnson, W.B., Schechtman, G.: Diamond graphs and super-reflexivity. J. Topol. Anal. 1(2), 177–189 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kalton, N., Randrianarivony, L.: The coarse Lipschitz structure of \(\ell _p\oplus \ell _q\), 013). Math. Ann. 341, 223–237 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kloeckner, B.: Yet another short proof of the Bourgains distortion estimate for embedding of trees into uniformly convex Banach spaces. Israel J. Math. 200(1), 419–422 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Knaust, H., Schlumprecht, Th, Odell, E.: On asymptotic structure, the Szlenk index and UKK properties inBanach spaces. Positivity 3, 173–199 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lancien, G., Raja, M.: Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces. Houst. J. Math. arXiv:1705.00577 (to appear)
  24. 24.
    Pisier, G.: Martingales with values in uniformly convex Banach spaces. Israel J. Math. 20(3), 326–350 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMiami UniversityOxfordUSA

Personalised recommendations