Skip to main content
Log in

um-Topology in multi-normed vector lattices

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \({\mathcal {M}}=\{m_\lambda \}_{\lambda \in \Lambda }\) be a separating family of lattice seminorms on a vector lattice X, then \((X,{\mathcal {M}})\) is called a multi-normed vector lattice (or MNVL). We write \(x_\alpha \xrightarrow {\mathrm {m}} x\) if \(m_\lambda (x_\alpha -x)\rightarrow 0\) for all \(\lambda \in \Lambda \). A net \(x_\alpha \) in an MNVL \(X=(X,{\mathcal {M}})\) is said to be unbounded m-convergent (or um-convergent) to x if \(|x_\alpha -x |\wedge u \xrightarrow {\mathrm {m}} 0\) for all \(u\in X_+\). um-Convergence generalizes un-convergence (Deng et al. in Positivity 21:963–974, 2017; Kandić et al. in J Math Anal Appl 451:259–279, 2017) and uaw-convergence (Zabeti in Positivity, 2017. doi:10.1007/s11117-017-0524-7), and specializes up-convergence (Aydın et al. in Unbounded p-convergence in lattice-normed vector lattices. arXiv:1609.05301) and \(u\tau \)-convergence (Dabboorasad et al. in \(u\tau \)-Convergence in locally solid vector lattices. arXiv:1706.02006v3). um-Convergence is always topological, whose corresponding topology is called unbounded m-topology (or um-topology). We show that, for an m-complete metrizable MNVL \((X,{\mathcal {M}})\), the um-topology is metrizable iff X has a countable topological orthogonal system. In terms of um-completeness, we present a characterization of MNVLs possessing both Lebesgue’s and Levi’s properties. Then, we characterize MNVLs possessing simultaneously the \(\sigma \)-Lebesgue and \(\sigma \)-Levi properties in terms of sequential um-completeness. Finally, we prove that every m-bounded and um-closed set is um-compact iff the space is atomic and has Lebesgue’s and Levi’s properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. Mathematical Surveys and Monographs, vol. 105. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

  2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators, 2nd edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  3. Aydın, A., Emelyanov, E.Y., Özcan, N.E., Marabeh, M.A.A.: Unbounded \(p\)-convergence in lattice-normed vector lattices. Preprint, arXiv:1609.05301

  4. Aydın, A., Emelyanov, E.Y., Özcan, N.E., Marabeh, M.A.A.: Compact-like operators in lattice-normed spaces. Preprint, arXiv:1701.03073v2

  5. Dabboorasad, Y., Emelyanov, E.Y., Marabeh, M.A.A.: Order convergence in infinite-dimensional vector lattices is not topological. Preprint, arXiv:1705.09883v1

  6. Dabboorasad, Y., Emelyanov, E.Y., Marabeh, M.A.A.: \(u\tau \)-Convergence in locally solid vector lattices. Preprint, arXiv:1706.02006v3

  7. Deng, Y., O’Brien, M., Troitsky, V.G.: Unbounded norm convergence in Banach lattices. Positivity 21, 963–974 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Emelyanov, E.Y., Marabeh, M.A.A.: Two measure-free versions of the Brezis–Lieb Lemma. Vladikavkaz Math. J. 18(1), 21–25 (2016)

    MathSciNet  Google Scholar 

  9. Gao, N.: Unbounded order convergence in dual spaces. J. Math. Anal. Appl. 419, 347–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, N., Troitsky, V.G., Xanthos, F.: Uo-convergence and its applications to Cesàro means in Banach lattices. Isr. J. Math. 220, 649–689 (2017)

    Article  MATH  Google Scholar 

  11. Gao, N., Leung, D.H., Xanthos, F.: Duality for unbounded order convergence and applications. Preprint, arXiv:1705.06143

  12. Gao, N., Leung, D.H., Xanthos, F.: The dual representation problem of risk measures. Ppreprint, arXiv:1610.08806

  13. Gao, N., Xanthos, F.: Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl. 415, 931–947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jarchow, H.: Locally Convex Spaces. Mathematische Leitfden. B. G. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  15. Kandić, M., Marabeh, M.A.A., Troitsky, V.G.: Unbounded norm topology in Banach lattices. J. Math. Anal. Appl. 451, 259–279 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kandić, M., Li, H., Troitsky, V.G.: Unbounded norm topology beyond normed lattices. Preprint, arXiv:1703.10654

  17. Kandić, M., Vavpetić, A.: Topological aspects of order in \(C(X)\). Preprint, arXiv:1612.05410

  18. Kusraev, A.G.: Dominated Operators. Mathematics and its Applications, vol. 519. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  19. Li, H., Chen, Z.: Some loose ends on unbounded order convergence. Positivity (2017). doi:10.1007/s11117-017-0501-1

    Google Scholar 

  20. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  21. Taylor, M.A.: Unbounded topologies and uo-convegence in locally solid vector lattices. Preprint, arXiv:1706.01575

  22. Troitsky, V.G.: Measures of non-compactness of operators on Banach lattices. Positivity 8(2), 165–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vulikh, B.Z.: Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Scientific Publications Ltd., Groningen (1967)

    MATH  Google Scholar 

  24. Wickstead, A.W.: Weak and unbounded order convergence in Banach lattices. J. Aust. Math. Soc. Ser. A 24(3), 312–319 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zabeti, O.: Unbounded absolute weak convergence in Banach lattices. Positivity (2017). doi:10.1007/s11117-017-0524-7

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Dabboorasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabboorasad, Y.A., Emelyanov, E.Y. & Marabeh, M.A.A. um-Topology in multi-normed vector lattices. Positivity 22, 653–667 (2018). https://doi.org/10.1007/s11117-017-0533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-017-0533-6

Keywords

Mathematics Subject Classification

Navigation