Skip to main content
Log in

Individual ergodic theorems in noncommutative Orlicz spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

For a noncommutative Orlicz space associated with a semifinite von Neumann algebra, a faithful normal semifinite trace and an Orlicz function satisfying \((\delta _2,\Delta _2)\)-condition, an individual ergodic theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chilin, V., Litvinov, S., Skalski, A.: A few remarks in non-commutative ergodic theory. J. Oper. Theor. 53(2), 331–350 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Chilin, V., Litvinov, S.: Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators. Methods Funct. Anal. Topol 12, 124–130 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Chilin, V., Litvinov, S.: Ergodic theorems in fully symmetric spaces of \(\tau -\)measurable operators. Studia Math. 288(2), 177–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dodds, P.G., Dodds, T.K., Pagter, B.: Fully symmetric operator spaces. Integr. Equat. Oper. Theor 15, 942–972 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dodds, P.G., Dodds, T.K., Pagter, B.: Noncommutative Kothe duality. Trans. Amer. Math. Soc. 339(2), 717–750 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Dodds, P.G., Dodds, T.K., Sukochev, F.A., Tikhonov, Y.O.: A Non-commutative Yoshida-Hewitt theorem and convex sets of measurable operators closed locally in measure. Positivity 9, 457–484 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dodds, P.G., Pagter, B., Sukochev, F.A.: Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators. Trans. Amer. Math. Soc. (2015) (to appear)

  8. Edgar, G.A., Sucheston, L.: Stopping Times and Directed Processes. Cambridge University Press (1992)

  9. Fack, T., Kosaki, H.: Generalized \(s\)-numbers of \(\tau \)-measurable operators. Pacific J. Math. 123, 269–300 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Junge, M., Xu, Q.: Noncommutative maximal ergodic theorems. Amer. Math. Soc. 20(2), 385–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kadison, R.V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 56(2), 494–503 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krein, S.G., Petunin, J.I., Semenov, E.M.: Interpolation of linear operators. Trans. Math. Monogr. Amer. Math. Soc. 54 (1982)

  13. Kunze, W.: Noncommutative Orlicz spaces and generalized Arens algebras. Math. Nachr. 147, 123–138 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lindenstraus, J., Tsafriri, L.: Classical Banach Spaces I-II. Springer-Verlag, Berlin Heidelberg New York (1977)

    Book  Google Scholar 

  15. Litvinov, S.: Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems. Proc. Amer. Math. Soc. 140(7), 2401–2409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muratov, M.A.: Noncommutative Orlicz-spaces. Dokl. Akad. Nauk UzSSR 6, 11–13 (1978)

    MathSciNet  MATH  Google Scholar 

  17. Muratov, M.A.: The Luxemburg norm in Orlicz-spaces. Dokl. Akad. Nauk UzSSR 1, 5–6 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pisier, G., Xu, Q.: Noncommutative \(L^p\)-Spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 2. Elsevier, Amsterdam (2003)

    Google Scholar 

  20. Segal, I.E.: A non-commutative extension of abstract integration. Ann. Math. 57, 401–457 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. Semenov, E.M., Sukochev, F.A.: The Banach-Saks index. Matematicheski Sbornik 195(2), 263–285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yeadon, F.J.: Non-commutative \(L^p\)-spaces. Math. Proc. Camb. Phil. Soc. 77, 91–102 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yeadon, F.J.: Ergodic theorems for semifinite von Neumann algebras I. J. London Math. Soc. 16(2), 326-332 (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Litvinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chilin, V., Litvinov, S. Individual ergodic theorems in noncommutative Orlicz spaces. Positivity 21, 49–59 (2017). https://doi.org/10.1007/s11117-016-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-016-0402-8

Keywords

Mathematics Subject Classification

Navigation