Skip to main content
Log in

Relative modular convergence of positive linear operators

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper we define a new type of modular convergence by using the notion of the relatively uniform convergence. We prove a Korovkin-type approximation theorem via this type of convergence in modular spaces. Then, we construct an example such that our new approximation result works but its classical cases do not work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altomare, F., Campiti, M.: Korovkin Type Approximation Theory and its Application. Walter de Gruyter Publ, Berlin (1994)

    Book  MATH  Google Scholar 

  2. Bardaro, C., Mantellini, I.: Approximation properties in abstract modular spaces for a class of general sampling-type operators. Appl. Anal. 85, 383–413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardaro, C., Mantellini, I.: Korovkin’s theorem in modular spaces. Comment. Math. 47, 239–253 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Bardaro, C., Mantellini, I.: A Korovkin Theorem in multivariate modular function spaces. J. Funct. Spaces Appl. 7, 105–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, de Gruyter Series in Nonlinear Analysis and Appl. Vol. 9, 201. Walter de Gruyter Publ., Berlin (2003)

  6. Chittenden, E.W.: Relatively uniform convergence of sequences of functions. Trans. AMS 20, 197–201 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chittenden, E.W.: On the limit functions of sequences of continuous functions converging relatively uniformly. Trans. AMS 20, 179–184 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chittenden, E.W.: Relatively uniform convergence and classification of functions. Trans. AMS 23, 1–15 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer series in computational mathematics 9. Springer, New York (1987)

    Book  MATH  Google Scholar 

  10. Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publ. Corp, Delhi (1960)

    MATH  Google Scholar 

  11. Kozlowski, W.M.: Modular Function Spaces. Pure Appl. Math., vol. 122. Marcel Dekker Inc, New York (1988)

  12. Moore, E.H.: An Introduction to a Form of General Analysis. The New Haven Mathematical Colloquium. Yale University Press, New Haven (1910)

    Book  MATH  Google Scholar 

  13. Mantellini, I.: Generalized sampling operators in modular spaces. Comment. Math. 38, 77–92 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Musielak, J., Orlicz, W.: On modular spaces. Stud. Math. 18, 49–65 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

  16. Musielak, J.: Nonlinear approximation in some modular function spaces I. Math. Japon. 38, 83–90 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Demirci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, B., Demirci, K. & Orhan, S. Relative modular convergence of positive linear operators. Positivity 20, 565–577 (2016). https://doi.org/10.1007/s11117-015-0372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-015-0372-2

Keywords

Mathematics Subject Classification

Navigation