, Volume 20, Issue 2, pp 499–514 | Cite as

Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization

  • Nguyen Le Hoang AnhEmail author


In this paper, we introduce a notion of higher-order Studniarski epiderivative of a set-valued map and study its properties. Then, we discuss their applications to optimality conditions in set-valued optimization. Higher-order optimality conditions for strict and weak efficient solutions of a constrained set-valued optimization problem are established. Some remarks on the existing results in the literature are given from our results.


Higher-order Studniarski epiderivative Set-valued optimization problem Optimality condition Strict efficient solution Weak efficient solution C-preinvexity  

Mathematics Subject Classification

32F17 46G05 54C60 90C46 



This research was supported by Vietnam National University Hochiminh City (VNU-HCM) under grant number B2015-28-03. The author thanks an anonymous referee for helpful remarks and suggestions.


  1. 1.
    Anh, N.L.H.: Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality. Positivity 18, 449–473 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anh, N.L.H., Khanh, P.Q.: Calculus and applications of Studniarskis derivatives to sensitivity and implicit function theorems. Control Cybern. 43, 34–57 (2014)MathSciNetGoogle Scholar
  3. 3.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)zbMATHGoogle Scholar
  4. 4.
    Bednarczuk, E.M., Song, W.: Contingent epiderivative and its applications to set-valued maps. Control Cybern. 27, 375–386 (1998)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bhatia, D., Mehra, A.: Lagrangian duality for preinvex set-valued function. J. Math. Anal. Appl. 214, 599–612 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, C.R., Li, S.J., Teo, K.L.: Higher-order weak epiderivatives and applications to duality and optimality conditions. Comput. Math. Appl. 57, 1389–1399 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, 881–908 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Meth. Oper. Res. 46, 193–211 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jiménez, B., Novo, V.: Higher-order optimality conditions for strict local minima. Ann. Oper. Res. 157, 183–192 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kasimbeyli, R.: Radial epiderivatives and set-valued optimization. Optimization 58, 521–534 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khanh, P.Q., Tung, N.M.: Optimality conditions and duality for nonsmooth vector equilibrium problems with constraints. Optimization 64, 1547–1575 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, S.J., Zhu, S.K., Teo, K.L.: New generalized second-order contingent epiderivatives and set-valued optimization problems. J. Optim. Theory Appl. 152, 587–604 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Luu, D.V.: Higher-order necessary and sufficient conditions for strict local Pareto minima in terms of Studniarskis derivatives. Optimization 57, 593–605 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24, 1044–1049 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sun, X.K., Li, S.J.: Lower Studniarski derivative of the perturbation map in parametrized vector optimization. Optim Lett. 5, 601–614 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, Q.L., Li, S.J.: Higher-order weakly generalized adjacent epiderivatives and applications to duality of set-valued optimization. J. Inequal. Appl., Art. ID 462637 (2009)Google Scholar
  17. 17.
    Wang, Q.L., Yu, G.L.: Higher order weakly generalized epiderivatives and applications to optimality conditions. J. Appl. Math., Art. ID 691018 (2012)Google Scholar
  18. 18.
    Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming. Bull. Aust. Math. Soc. 38, 177–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Weir, T., Mond, B.: Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136, 29–38 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Optimization and System TheoryUniversity of Science, Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam

Personalised recommendations