, Volume 20, Issue 2, pp 467–481 | Cite as

Perturbations of positive semigroups on \(L_p\)-spaces

  • Christian SeifertEmail author
  • Marcus Waurick


We give a characterization of a variation of constants type estimate relating two positive semigroups on (possibly different) \(L_p\)-spaces to one another in terms of corresponding estimates for the respective generators and of estimates for the respective resolvents. The results have applications to kernel estimates for semigroups induced by accretive and non-local forms on \(\sigma \)-finite measure spaces.


Positive \(C_0\)-semigroups Kernel estimates Perturbed semigroups 

Mathematics Subject Classification

35B09 35B20 35K08 


  1. 1.
    Abramovich, Y.A., Aliprantis, C.D.: An invitiation to operator theory. Graduate Studies in Mathematics, 50, American Mathematical Society. Procivence (2002)Google Scholar
  2. 2.
    Arendt, W., Chill, R., Seifert, C., Vogt, H., Voigt, J.: Form methods for evolution equations, and applications. In: 18th Interent Seminar on evolution equations, Lecture Notes. (2014)
  3. 3.
    Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter Semigroups of Positive Operators. Springer (1986)Google Scholar
  4. 4.
    Arendt, W., ter Elst, A.F.M.: Sectorial forms and degenerate differential operators. J. Oper. Theory 67, 33–72 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barlow, M.T., Bass, R.F., Chen, Z.Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361(4), 1963–1999 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barlow, M.T., Grigor’yan, A., Kumagai, T.: Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626, 135–157 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bergh, J., Löfström, J.: Interpolation spaces. An introduction. In: Grundlehren der mathematischen Wissenschaften 223. Springer, Berlin-Heidelberg-New York (1976)Google Scholar
  8. 8.
    Chen, Z.Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Prob. Theory Relat. Fields 140(1–2), 277–317 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations Graduate texts in mathematics, 194. Springer, New York, Berlin, Heidelberg (1999)Google Scholar
  10. 10.
    Foondun, M.: Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part. Electron. J. Prob. 14(11), 314–340 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fremlin, D.H.: Measure theory. vol. 2. Broad Foundations. (2001)
  12. 12.
    Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174(1), 81–126 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ouhabaz, E.M.: Analysis of heat equations on domains. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  14. 14.
    Segal, I.E.: Equivalences of Measure Spaces. Am. J. Math. 73(2), 275–313 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Seifert, C., Wingert, D.: On the perturbation of positive semigroups. Semigroup Forum. doi: 10.1007/s00233-014-9651-7
  16. 16.
    Wingert, D.: Evolutionsgleichungen und obere Abschätzungen an die Lösungen des Anfangswertproblems. Doctoral Thesis. (2011)

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität Hamburg-HarburgHamburgGermany
  2. 2.Fachrichtung MathematikTechnische Universität DresdenDresdenGermany

Personalised recommendations