Advertisement

Positivity

, Volume 20, Issue 2, pp 385–398 | Cite as

Generating functions method for classical positive operators, their q-analogues and generalizations

  • Akif Barbaros Dikmen
  • Alexey LukashovEmail author
Article

Abstract

We present generating functions approach to obtain convergence results for q-analogues of classical positive Bernstein and Baskakov operators and their generalizations.

Keywords

Bernstein polynomials Baskakov operators Generating functions method  Videnskii operators Lupas operators 

Mathematics Subject Classification

47B65 41A36 

References

  1. 1.
    Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and Its Applications. Walter de Gruyter, Berlin (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    King, J.P.: The Lototsky transform and Bernstein polynomials. Canad. J. Math. 18, 89–91 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lorentz, G.G.: Bernstein Polynomials. Chelsea, New York (1986)zbMATHGoogle Scholar
  4. 4.
    DeVore, R.A., Lorentz, G.G.: Constructive approximation. Grundlehren der mathematischen Wissenschaften, vol. 303. Springer, Berlin Heidelberg (1993)Google Scholar
  5. 5.
    Videnskii, V.: Bernstein Polynomials. Leningradskii Pedagogical Institute, Leningrad (1990)zbMATHGoogle Scholar
  6. 6.
    Videnskii, V.: Approximation of functions by rational fractions with fixed real poles. Vesti Akad. Novuk BSSR Ser. Fiz-Mat Navuk. 1, 35–41 (1979)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dikmen, A., Lukashov, A.L.: Weighted approximation by analogues of Bernstein operators for rational functions. Acta Mathematica Hungarica 143(2), 439–352 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Videnskii, V.S.: A remark on the rational linear operators considered by A. Lupas, Some current problems in modern mathematics and education in mathematics. Ross. Gos. Ped. Univ. St. Petersburg (2008) 134–146Google Scholar
  9. 9.
    Ostrovska, S.: On the Lupas q-analogue of the Bernstein polynomials. Rocky Mountain J. Math. 36, 1615–1629 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Swetits, J., Wood, B.: On a class of positive linear operators. Canad. Math. Bull. 16(4), 557–559 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Baskakov, V.A.: An example of a sequence of linear positive operators in the space of continuous function. Dokl. Akad. Nauk SSSR. 113, 249–251 (1957)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mencher, A.: Linear positive operators on the semi-axis constructed by means of generating functions. Leningrad Ped. Inst. 83, 105–110 (1985)MathSciNetGoogle Scholar
  13. 13.
    Aral, A., Gupta, V.: On q- Baskakov type operators. Demonstratio Matematica 42(1), 109–122 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Engineering ScienceIstanbul UniversityIstanbulTurkey
  2. 2.Department of Mathematics and MechanicsSaratov State UniversitySaratovRussia
  3. 3.Fatih UniversityIstanbulTurkey

Personalised recommendations