, Volume 20, Issue 1, pp 171–185 | Cite as

Generalized Dini theorems for nets of functions on arbitrary sets

  • Vlad TimofteEmail author
  • Aida Timofte


We characterize the uniform convergence of pointwise monotonic nets of bounded real functions defined on arbitrary sets, without any particular structure. The resulting condition trivially holds for the classical Dini theorem. Our vector-valued Dini-type theorem characterizes the uniform convergence of pointwise monotonic nets of functions with relatively compact range in Hausdorff topological ordered vector spaces. As a consequence, for such nets of continuous functions on a compact space, we get the equivalence between the pointwise and the uniform convergence. When the codomain is locally convex, we also get the equivalence between the uniform convergence and the weak-pointwise convergence; this also merges the Dini-Weston theorem on the convergence of monotonic nets from Hausdorff locally convex ordered spaces. Most of our results are free of any structural requirements on the common domain and put compactness in the right place: the range of the functions.


Dini theorem Uniform convergence Pointwise convergence  Net of functions Topological ordered vector space Stone-Čech compactification 

Mathematics Subject Classification

46A40 40A30 


  1. 1.
    Amerio, L.: Quasi-periodicità degli integrali ad energia limitata dell’equazione delle onde, con termine noto quasi-periodico (Italian). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 28(8), 322–327 (1960)Google Scholar
  2. 2.
    Beer, G.: On Dini’s theorem and a metric on \(C(X)\) topologically equivalent to the uniform metric. Proc. Amer. Math. Soc. 86, 75–80 (1982)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bochner, S.: Uniform convergence of monotone sequences of functions. Proc. Nat. Acad. Sci. USA 47, 582–585 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Cristescu, R.: Topological vector spaces (translated from Romanian). Bucharest; Noordhoff International Publishing, Leyden, Editura Academiei (1977)Google Scholar
  5. 5.
    Dugundji, J.: Topology. Allyn and Bacon Inc., Boston (1970)Google Scholar
  6. 6.
    Gal, S.: New Dini theorems for sequences which satisfy generalized Alexandrov conditions. Studia Univ. Babeş-Bolyai Math. 34, 20–23 (1989)zbMATHGoogle Scholar
  7. 7.
    Helmberg, G.: Almost periodic functions and Dini’s theorem. Indag. Math. 26, 173–177 (1964)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kundu, S., Raha, A.B.: The Stone-Weierstrass theorem and Dini’s theorem: an insight. Houston J. Math. 27, 887–895 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kupka, I.: A generalised uniform convergence and Dini’s theorem. N. Z. J. Math. 27, 67–72 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. Vol. I. North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York (1971)Google Scholar
  11. 11.
    Meisters, G.H.: Almost periodic Dini theorems. Rocky Mt. J. Math. 5, 419–426 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Mong, S.: A note on Dini’s theorem. Math. Mag. 38, 107–108 (1965)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Raha, A.B., Srivastava, S.M.: Spaces for which Dini’s theorem holds. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29, 275–278 (1981)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Schaefer, H.H.: Banach lattices and positive operators. Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg (1974)Google Scholar
  15. 15.
    Światkowsk, T.: Weierstrass-Stone and Dini theorems for functions with compact supports. Zeszyty Nauk. Politech. Łódz Mat. No. 23, 59–65 (1993)Google Scholar
  16. 16.
    Timofte, V.: Special uniform approximations of continuous vector-valued functions. Part I: special approximations in \(C_X(T)\). J. Approx. Theory 119, 291–299 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Timofte, V.: Stone-Weierstrass theorems revisited. J. Approx. Theory 136, 45–59 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Toma, V.: Strong convergence and Dini theorems for non-uniform spaces. Ann. Math. Blaise Pascal 4, 97–102 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Zaanen A.C.: Riesz Spaces. Vol. II. North-Holland Mathematical Library, 30. North-Holland Publishing Co., Amsterdam (1983)Google Scholar
  20. 20.
    Žikov, V.V.: Dini’s theorem for monotonic sequences of almost periodic, almost automorphic and recurrent functions and questions connected with it, Vestnik Moskov. Univ. Ser. I Mat. Meh. 22, 12–16 (1967)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations