, Volume 19, Issue 2, pp 347–354 | Cite as

The Rayleigh\(-\)Ritz minimax formula in Kaplansky\(-\)Hilbert modules

  • Uğur GönüllüEmail author


We give the Rayleigh\(-\)Ritz minimax formula for cyclically compact operators on Kaplansky\(-\)Hilbert modules.


Kaplansky\(-\)Hilbert module Cyclically compact operator The Rayleigh\(-\)Ritz minimax formula 

Mathematics Subject Classification (2000)

Primary 47B60 47B06 Secondary 46A19 47B07 46L08 



The author sincerely thanks Prof. Anatoly Kusraev for his hospitality during the author’s stay in the Southern Mathematical Institute in Vladikavkaz, Russia, where the present work has been carried out as part of the author’s PhD thesis.


  1. 1.
    Allakhverdiev, D.É.: On the rate of approximation of completely continuous operators by finite dimensional operators [in Russian]. Azerb. Gos. Univ. Uchen. Zap. (Baku) 2, 27–37 (1957)Google Scholar
  2. 2.
    Berberian, S.K.: Baer \(\ast \)-Rings. Springer, Berlin (1972)Google Scholar
  3. 3.
    Fiedler, M., Pták, V.: Sur la meilleure approximation des transformations lineaires par des transformations de rang prescrit. C.R. Acad. Sci. Paris 254, 3805–3807 (1962)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Garling, D.J.H.: Inequalities A Journey into Linear Analysis. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kaplansky, I.: Modules over operator algebras. Am. J. Math. 75(4), 839–858 (1953)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kusraev, A.G.: Boolean valued analysis of duality between universally complete modules. Dokl. Akad. Nauk SSSR 267(5), 1049–1052 (1982)MathSciNetGoogle Scholar
  7. 7.
    Kusraev, A.G.: Vector Duality and Its Applications [in Russian]. Nauka, Novosibirsk (1985)Google Scholar
  8. 8.
    Kusraev, A.G.: Cyclically compact operators in Banach spaces. Vladikavkaz Math. J. 2(1), 10–23 (2000)Google Scholar
  9. 9.
    Kusraev, A.G.: Dominated Operators. Kluwer Academic Publishers, Boston (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Scienceİstanbul Kültür UniversityBakırköy Turkey

Personalised recommendations