Advertisement

Positivity

, Volume 19, Issue 2, pp 221–236 | Cite as

Optimality conditions for nonsmooth semidefinite programming via convexificators

  • M. Golestani
  • S. NobakhtianEmail author
Article

Abstract

This study is devoted to the semidefinite optimization problems with inequality constraints. We use the notion of convexificators to establish optimality conditions for nonsmooth semidefinite optimization problems. Moreover, we introduce appropriate constraint qualifications to present the Karush–Kuhn–Tucker multipliers.

Keywords

Semidefinite programming Convexificators Nonsmooth analysis Optimality conditions 

Mathematics Subject Classification (2010)

90C46 90C22 49J52 

Notes

Acknowledgments

The second author was partially supported by the Center of Excellence for Mathematics, University of Shahrekord, Iran.

References

  1. 1.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley-Interscience, Hoboken (2006)CrossRefGoogle Scholar
  2. 2.
    Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific Publishing Co., Inc., River Edge (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)Google Scholar
  4. 4.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, vol. 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)CrossRefGoogle Scholar
  5. 5.
    Clarke, F.H.: Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, vol. 5, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)Google Scholar
  6. 6.
    Demyanov, V.F., Jeyakumar, V.: Hunting for a smaller convex subdifferential. J. Glob. Optim. 10, 305–326 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dutta, J., Chandra, S.: Convexifactors, generalized convexity and vector optimization. Optimization 53, 77–94 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fan, J.: Generalized separation theorems and the Farkas’ lemma. Appl. Math. Lett. 18, 791–796 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Goemans, M.X.: Semidefinite programming in combinatorial optimization. Math. Progr. Ser. B 79, 143–161 (1997)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Golestani, M., Nobakhtian, S.: Convexificators and strong Kuhn–Tucker conditions. Comput. Math. Appl. 64, 550–557 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Golestani, M., Nobakhtian, S.: Nonsmooth multiobjective programming and constraint qualifications. Optimization 62, 783–795 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Golestani, M., Nobakhtian, S.: Nonsmooth multiobjective programming: strong Kuhn–Tucker conditions. Positivity 13, 711732 (2013)MathSciNetGoogle Scholar
  13. 13.
    Jeyakumar, V., Luc, D.T.: Approximate Jacobian matrices for nonsmooth continuous maps and \(C^{1}\)-optimization. SIAM J. Control Optim. 36(1998), 1815–1832 (1998) Google Scholar
  14. 14.
    Jeyakumar, V., Luc, D.T.: Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101, 599–621 (1999)Google Scholar
  15. 15.
    Kanzow, C., Nagel, C., Kato, H., Fukushima, M.: Successive linearization methods for nonlinear semidefinite programs. Comput. Optim. Appl. 31, 251–273 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lewis, A.S., Overton, M.L.: Eigenvalue optimization. Acta Numer. 5, 149–190 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luc, D.T.: A multiplier rule for multiobjective programming problems with continuous data. SIAM J. Optim. 13, 168–178 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Michel, P., Penot, J.P.: A generalized derivative for calm and stable functions. Differ. Integr. Equ. 5, 433–454 (1992)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Basic theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)Google Scholar
  20. 20.
    Mordukhovich, B.S., Shao, Y.H.: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2, 211–227 (1995)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Rockafellar, R.T., Wets, R.J.B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)Google Scholar
  22. 22.
    Suneja, S.K., Kohli, B.: Optimality and duality results for bilevel programming problem using convexifactors. J. Optim. Theory Appl. 150, 1–19 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Treiman, J.S.: The linear nonconvex generalized gradient and Lagrange multipliers. SIAM J. Optim. 5, 670–680 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Uderzo, A.: Convex approximators, convexificators and exhausters: applications to constrained extremum problems. In: Quasidifferentiability and related topics, Nonconvex Optimization Applications, vol. 43, pp. 297–327. Kluwer Acad. Publ., Dordrecht (2000)Google Scholar
  26. 26.
    Zangwill, W.I., Mond, B.: Nonlinear programming: a unified approach. Prentice-Hall Inc., Englewood Cliffs (1969)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FasaFasaIran
  2. 2.Department of MathematicsUniversity of IsfahanIsfahanIran

Personalised recommendations