Advertisement

Positivity

, Volume 18, Issue 3, pp 585–594 | Cite as

Approximation in Banach space by linear positive operators

  • Arash GhorbanalizadehEmail author
  • Yoshihiro Sawano
Article

Abstract

In this paper, we obtain a sufficient condition for the convergence of positive linear operators in Banach function spaces on \({\mathbb {R}}^n\) and derive a Korovkin type theorem for these spaces. Also, we generalized this result via statistical sense.

Keywords

Korovkin’s theorem Banach function spaces Positive linear operators 

Mathematics Subject Classification (2010)

Primary 42E35 

Notes

Acknowledgments

The research of Y. Sawano was supported by Grant-in-Aid for Young Scientists (B) (No.21740104) Japan Society for the Promotion of Science.

References

  1. 1.
    Altomare, F., Campiti, M.: Korovkin-type approximation theory and its applications, volume 17. de Gruyter (1994)Google Scholar
  2. 2.
    Bardaro, C., Mantellini, I.: Korovkin theorem in modular spaces. Comment. Math. Prace Matematyczne Ser. 1 Rocz Polsk Towarz Matematycz 47(2), 239–254 (2007)Google Scholar
  3. 3.
    Bardaro, C., Mantellini, I.: A Korovkin theorem in multivariate modular function spaces. J. Funct. Spaces Appl. 7(2), 105–120 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Abstract Korovkin type theorem in modular spaces and applications. Cent. Eur. J. Math. 11(10), 1774–1784 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Burenkov, V.I., Gogatishvili, A., Guliyev, V.S., Mustafayev, R.C.: Boundedness of the fractional maximal operator in local Morrey-type spaces. Complex variables and elliptic equations. 55(8–10), 739–758 (2010)Google Scholar
  6. 6.
    Curtis, P.C.: The degree of approximation by positive convolution operators. Mich. Math. J. 12(2), 155–160 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dzyadyk, V.K.: Approximation of functions by positive linear operators and singular integrals. Matematicheskii Sbornik 112(4), 508–517 (1966)Google Scholar
  8. 8.
    Dzyadyk, V.K., Shevchuk, I.A.: Theory of uniform approximation of functions by polynomials. De Gruyter (2008)Google Scholar
  9. 9.
    Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gadjiev, A.D.: A problem on the convergence of a sequence of positive linear operators on unbounded sets and theorems that are analogous to pp korovkins theorem. Dokl. Akad. Nauk SSSR 218, 1001–1004 (1974)MathSciNetGoogle Scholar
  11. 11.
    Gadjiev, A.D., Aral, A.: Weighted Lp-approximation with positive linear operators on unbounded sets. Appl. Math. Lett. 20(10), 1046–1051 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gadjiev, A.D., Efendiyev, R.O., Ibikli, E.: On korovkin type theorem in the space of locally integrable functions. Czechoslov. Math. J. 53(1), 45–53 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gadjiev, A.D., Ghorbanalizadeh, A.M.: On the a-statistical approximation by secuences of k-positive linear operators. In: Proceedings of IMM of NAS of Azerbaijan, pp. 41–52 (2009)Google Scholar
  14. 14.
    Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32(1), 129–138 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gadzhiev, A.D.: Theorems of Korovkin type. Math. Notes 20(5), 995–998 (1976)CrossRefGoogle Scholar
  16. 16.
    Korovkin, P.P.: On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 90, 961–964 (1953)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Korovkin, P.P.: Linear operators and approximation theory. Hindustan Publishing Corporation (1960)Google Scholar
  18. 18.
    Šaškin, Y.A.: Korovkin systems in spaces of continuous functions. Am. Math. Soc. Transl. 54(2), 125–144 (1966)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Department of Mathematics and Information ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations