, Volume 18, Issue 3, pp 475–488 | Cite as

Reflexivity of Banach \(C(K)\)-modules via the reflexivity of Banach lattices

  • Arkady KitoverEmail author
  • Mehmet Orhon


We extend the well known criteria of reflexivity of Banach lattices due to Lozanovsky and Lotz to the class of finitely generated Banach \(C(K)\)-modules. Namely we prove that a finitely generated Banach \(C(K)\)-module is reflexive if and only if it does not contain any subspace isomorphic to either \(l^{1}\) or \(c_{0}\).


Reflexivity Banach \(C(K)\)-modules Banach lattices 

Mathematics Subject Classification (1991)

Primary 46B10 46A25 Secondary 46B42 



We are grateful to H. Rosenthal and T. Oikhberg, respectively, for remarks that allowed us to simplify condition (3) of Theorem 1 and the proof of Lemma 3, respectively.


  1. 1.
    Abramovich, Y.A., Arenson, E.L., Kitover, A.K.: Banach \(C(K)\)-modules and operators preserving disjointness. In: Pitman Research Notes in Mathematical Series, vol. 277. Longman Scientific and Tecnical (1992)Google Scholar
  2. 2.
    Bade, W.G.: On Boolean algebras of projections and algebras of operators. Trans. Am. Math. Soc. 80, 345–360 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bade, W.G.: A multiplicity theory for Boolean algebras of projections in Banach spaces. Trans. Am. Math. Soc. 92, 508–530 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bessaga, C., Pelczynski, A.: Some remarks on conjugate spaces containing subspaces isomorphic to \(c_{0}\). Bull. Acad. Polon. Sci. 6, 249–250 (1958)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dieudonné, J.: Champs de vecteurs non localement trivaux. Archiv der Math. 7, 6–10 (1956)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part III: Spectral Operators. Wiley, New York (1971)zbMATHGoogle Scholar
  7. 7.
    Hagler, J.: Some more Banach spaces which contain \(L^{1}\). Studia Math. 46, 35–42 (1973)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Hadwin, D., Orhon, M.: Reflexivity and approximate reflexivity for Boolean algebras of projections. J. Funct. Anal. 87, 348–358 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    James, R.C., Bases and reflexivity of Banach spaces. Ann. Math. (2) 52, 518–527 (1950)Google Scholar
  10. 10.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin (1977)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lorentz, G.: Some new functional spaces. Ann. Math. 51, 37–55 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lotz, H.P.: Minimal and reflexive Banach lattices. Math. Ann. 209, 117–126 (1973)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lozanovsky, G.Ya., Some topological conditions on Banach lattices and reflexivity conditions on them. Soviet Math. Dokl. 9, 1415–1418 (1968)Google Scholar
  14. 14.
    Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991)CrossRefGoogle Scholar
  15. 15.
    Orhon, M.: Boolean algebras of commuting projections. Math. Z. 183, 531–537 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Orhon, M., Algebras of operators containing a Boolean algebra of projections of finite multiplicity. In: Operators in Indefinite Metric Spaces, Scattering Theory And Other Topics (Bucharest, 1987). Oper. Theory: Adv. Appl., vol. 24, pp. 265–281. Birkhäuser, Basel (1985)Google Scholar
  17. 17.
    Orhon, M.: The ideal center of the dual of a Banach lattice. Positivity 14, 841–847 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Pelczynski, A.: Projections in certain Banach spaces. Studia Math. 19, 209–228 (1960)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Rall, C.: Boolesche Algebren von Projectionen auf Banachräumen, PhD Thesis, Universität Tübingen (1977)Google Scholar
  20. 20.
    Schaefer, H.H.: Banach lattices and positive operators. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  21. 21.
    Tzafriri, L.: On multiplicity theory for Boolean algabras of projections. Israel J. Math. 4, 217–224 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tzafriri, L.: Reflexivity of cyclic Banach spaces. Proc. Am. Math. Soc. 22, 61–68 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Veksler, A.I.: Cyclic Banach spaces and Banach lattices. Soviet Math. Dokl. 14, 1773–1779 (1973)Google Scholar
  24. 24.
    Willard, S.: General Topology. Addison-Wesley, Reading (1971)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsCommunity College of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Mathematics and StatisticsUniversity of New HampshireDurhamUSA

Personalised recommendations