, Volume 18, Issue 3, pp 425–437 | Cite as

On the decompositions of \(T\)-quasi-martingales on Riesz spaces

  • Jessica J. Vardy
  • Bruce A. WatsonEmail author


The concept of a quasi-martingale is generalised to the Riesz space setting. Here we show that a quasi-martingale can be decomposed into the sum of a martingale and a quasi-potential. If, in addition, the quasi-martingale and its filtration are right continuous we show that the quasi-martingale can decomposed into the sum of a right continuous martingale and the difference of two positive right continuous potentials. The approach is measure-free and relies entirely on the order structure of Riesz spaces.


Riesz space Conditional expectation Quasi-martingale 

Mathematics Subject Classification (2000)

46A40 47B60 60G20 60G48 



We thank Professor J.J. Grobler and the referee for their valuable suggestions and comments.


  1. 1.
    Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. American Mathematical Society (2002)Google Scholar
  2. 2.
    Boulabiar, K., Buskes, G., Triki, A.: Results in \(f\)-algebras. Positivity, Trends in Mathematics, pp. 73–96 (2007)Google Scholar
  3. 3.
    Dodds, P.G., Huijsmans, C.B., de Pagter, B.: Characterizations of conditional expectation-type operators. Pac. J. Math. 141, 55–77 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fisk, D.L.: Quasi-martingales. Trans. Am. Math. Soc. 120, 369–389 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Grobler, J.J.: Continuous stochastic processes on Riesz spaces: the Doob–Meyer decomposition. Positivity 14, 731–751 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Grobler, J.J., de Pagter, B.: Operators representable as multiplication-conditional expectation operators. J. Oper. Theory 48, 15–40 (2002)zbMATHGoogle Scholar
  7. 7.
    Korostenski, M., Labuschagne, C.C.A., Watson, B.A.: Reverse martingales in Riesz spaces. Oper. Theory Adv. Appl. 195, 213–230 (2009)MathSciNetGoogle Scholar
  8. 8.
    Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Discrete time stochastic processes on Riesz spaces. Indag. Math. N.S. 15, 435–451 (2004)Google Scholar
  9. 9.
    Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Conditional expectations on Riesz spaces. J. Math. Anal. Appl. 303, 509–521 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Labuschagne, C.C.A., Watson, B.A.: Discrete stochastic integrals in Riesz spaces. Positivity 14, 859–875 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Luxemburg, W.A.J., de Pagter, B.: Representations of positive projections II. Positivity 9, 569–605 (2004)CrossRefGoogle Scholar
  12. 12.
    Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North Holland, Amsterdam (1971)Google Scholar
  13. 13.
    Neveu, J.: Discrete-Parameter Martingales. North Holland, Amsterdam (1975)Google Scholar
  14. 14.
    Orey, S.: \(F\)-Processes. In: Proceedings of the Fifth Berkeley Symposium on Statistics and Probability, vol. 2, Part 1, pp. 301–313Google Scholar
  15. 15.
    Rao, K.M.: Quasi-martingales. Math. Scand. 24, 79–92 (1969)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Stoica, G.: Martingales in vector lattices. Bull. Math. Soc. Sci. Math. Roumanie. (N.S.). 34(82), 357–362 (1990)Google Scholar
  17. 17.
    Stoica, G.: Martingales in vector lattices II. Bull. Math. Soc. Sci. Math. Roumanie. (N.S.) 35(83), 155–157 (1991)Google Scholar
  18. 18.
    Troitsky, V.: Martingales in Banach lattices. Positivity 9, 437–456 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Watson, B.A.: An AndôDouglas type theorem in Riesz spaces with a conditional expectation. Positivity 13, 543–558 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Zaanen, A.C.: Riesz Spaces II. North Holland, Amsterdam (1983)Google Scholar
  21. 21.
    Zaanen, A.C.: Introduction to Operator Theory in Riesz Space. Springer, Berlin (1997)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.School of MathematicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations