, Volume 18, Issue 1, pp 29–39 | Cite as

Remarks on multiple summing operators on \(C(\Omega )\)-spaces

  • Dumitru Popa


We give the necessary and sufficient conditions for a multilinear bounded operator on \(C(\Omega _{1}) \times \cdots \times C(\Omega _{k}) \times X_{k+1}\times \cdots \times X_{k+n}\) to be multiple 1-summing. Based on this result we prove an inclusion result for multiple summing operators and an unexpected composition result of Grothendieck type for bilinear operators.


\(p\)-summing operators Multiple \(p\)-summing operators  Nuclear operators Banach spaces of continuous functions 

Mathematics Subject Classification (2010)

Primary 47H60 ; Secondary 47B10 47L20 46G10 



We would like to express our gratitude to the referee for his/her very careful reading of the manuscript, many valuable comments, suggestions which have improved the final version of the paper.


  1. 1.
    Bombal, F., Pérez-García, D., Villanueva, I.: Multilinear extensions of Grothendieck’s theorem. Q. J. Math. 55(4), 441–450 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Defant, A., Floret, K.: Tensor norms and operator ideals, North-Holland. Math. Stud. 176 (1993)Google Scholar
  3. 3.
    Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220–242 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. In: Cambridge Studies in Advance Mathematics, vol 43. Cambridge University Press, London (1995)Google Scholar
  5. 5.
    Diestel, J., Uhl, J.J.: Vector measures. In: Mathematical Surveys, vol 15. Ameican Mathematical Society, Providence (1977)Google Scholar
  6. 6.
    Dinculeanu, N.: Vector Measures. Veb Deutscher Verlag der Wiss, Berlin (1967)Google Scholar
  7. 7.
    Matos, M.C.: Fully absolutely summing and Hilbert–Schmidt multilinear mappings. Collect. Math. 54(2), 111–136 (2003)Google Scholar
  8. 8.
    Montgomery-Smith, S., Saab, P.: p-summing operators on injective tensor product of spaces. Proc R. Soc. Edinb. 120A, 283–296 (1992)Google Scholar
  9. 9.
    Pérez-García, D.: The inclusion theorem for multiple summing operators. Stud. Math. 165, 275–290 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pérez-García, D., Villaneva, I.: Multiple summing operators on C(K) spaces. Arkiv Mat. 42, 153–171 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pérez-García, D., Villanueva, I.: A composition theorem for multiple summing operators. Monatsh. Math. 146, 257–261 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Pietsch, A.: Operator Ideals. Veb Deutscher Verlag der Wiss., Berlin (1978). North Holland, 1980Google Scholar
  13. 13.
    Popa, D.: Pietsch integral operators on the injective tensor products of spaces. Glasg. Math. J. 39, 227–230 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Popa, D.: (r, p)-absolutely summing operators on the space \(C( T, X)\) and applications. Abstr. Appl. Anal. 6(5), 309–315 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Popa, D.: Examples of summing, integral and nuclear operators on the space \(C( \Omega, X)\) with values in \(c_{0}\). J. Math. Anal. Appl. 331(2), 850–865 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Popa, D.: Integral and nuclear operators on the space \(C( \Omega, c_{0}) \). Rocky Mt. J. Math. 38(1), 253–265 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Popa, D.: \(2\)-summing operators on \(C([ 0,1], l_{p}) \) with values in \(l_{1}\). Proc. Indian Acad. Sci. Math. Sci. 119(2), 221–230 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Ryan, R.A.: Introduction to tensor products of Banach spaces. In: Springer Monographs in Mathematics. Springer, Berlin (2002)Google Scholar
  19. 19.
    Swartz, Ch.: Absolutely summing and dominated operators on spaces of vector valued continuous functions. Trans. Am. Math. Soc. 179, 123–132 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Saab, E.: Familles absolument sommableset propriété de Radon–Nikodym, Semin. Choquet, 14e annee 1974/75, Initiation l’Anal., Expose C 7. (1975)
  21. 21.
    Saab, P.: Integral operators on spaces of continuous vector-valued functions. Proc. Am. Math. Soc. 111(4), 1003–1013 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Villanueva, I.: Integral mappings between Banach spaces. J. Math. Anal. Appl. 279(1), 56–70 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsOvidius University of ConstantaConstantaRomania

Personalised recommendations