, Volume 17, Issue 4, pp 1123–1140 | Cite as

Positive kernel operators in \(L^{p(x)}\) spaces

  • Vakhtang Kokilashvili
  • Alexander Meskhi
  • Muhammad Asad ZaighumEmail author


A characterization of a weight \(v\) governing the boundedness/compactness of the weighted kernel operator \(K_v\) in variable exponent Lebesgue spaces \(L^{p(\cdot )}\) is established under the log-Hölder continuity condition on exponents of spaces. The kernel operator involves, for example, weighted variable parameter fractional integral operators. The distance between \(K_v\) and the class of compact integral operators acting from \(L^{p(\cdot )}\) to \(L^{q(\cdot )}\) (measure of non-compactness) is also estimated from above and below.


Variable exponent Lebesgue spaces Positive kernel operator Boundedness Compactness Measure of non-compactness 

Mathematics Subject Classification (2000)

46E30 47B34 


  1. 1.
    Ashraf, U., Kokilashvili, V., Meskhi, A.: Weight charcterization of the trace inequality for the generalized Riemann-Liouville transform in \(L^{p(x)}\) spaces. Math. Inequal. Appl. 13(1), 63–81 (2010)Google Scholar
  2. 2.
    Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator on variable \(L^{p}\) spaces. Revista Mat. Iberoamericana 3(23), 747–770 (2007)MathSciNetGoogle Scholar
  3. 3.
    Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Perez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 28(1), 223–238 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cruz-Uribe, D., Mamedov, F.I.: On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces. Rev. Mat. Complut. (2011). doi: 10.1007/s13163-011-0076-5
  6. 6.
    Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diening, L.: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\cdot )}\) and \(W^{k, p(\cdot )}\). Math. Nachr. 268, 31–34 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)CrossRefGoogle Scholar
  9. 9.
    Edmunds, D.E., Fiorenza, A., Meskhi, A.: On the measure of non-compactness for some classical operators. Acta Math. Sinica. 22(6), 1847–1862 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Edmunds, D.E., Kokilashvili, V., Meskhi, A.: Bounded and compact integral operators. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  11. 11.
    Edmunds, D.E., Kokilashvili, V., Meskhi, A.: On the boundedness and compactness of the weighted Hardy operators in \(L^{p(x)}\) spaces. Georgian Math. J. 12(1), 27–44 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Edmunds, D.E., Meskhi, A.: Potential-type operators in \(L^{p(x)}\) spaces. Z. Anal. Anwend. 21, 681–690 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kokilashvili, V.M.: On Hardy’s inequalities in weighted spaces. Soobsch. Akad. Nauk Gruz. SSR. 96, 37–40 (1979). (Russian)MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach Function Spaces. In “Function Spaces, Differential Operators and Nonlinear Analysis”, Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28–June 2. Math. Inst. Acad. Sci. of Czech Republic, Prague (2004)Google Scholar
  15. 15.
    Kokilashvili, V., Meskhi, A.: Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent. Integr. Trans. Spec. Func 18(9), 609–628 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kokilashvili, V., Meskhi, A.: Two-weight inequalities for fractional maximal functions and singular integrals in \(L^{p(\cdot )}\) spaces. J. Math. Sci. 173(6), 656–673 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kokilashvili, V., Meskhi, A., Sarwar, M.: One and two weight estimates for one-sided operators in \(L^{p(\cdot )}\) spaces. Eurasian Math. J. 1(1), 73–110 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kokilashvili, V.: Maximal and fractional operators in weighted \(L^{p(x)}\) spaces. Rev. Mat. Iberoamericana 20(2), 493–515 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen 22(4), 899–910 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kopaliani, T.S.: On some structural properties of Banach function spaces and boundedness of certain integral operators. Czechoslovak Math. J. 54(3), 791–805 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kovácik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41(116), 592–618 (1991)MathSciNetGoogle Scholar
  22. 22.
    Kufner, A., Persson, L.-E.: Weighted inequalities of Hardy type. World Scientific Publishing Co., Inc., River Edge (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Maz’ya, V.G.: Sobolev spaces. Springer, Berlin (1985)Google Scholar
  24. 24.
    Meskhi, A.: Criteria for the boundedness and compactness of integral transforms with positive kernels. Proc. Edinb. Math. Soc. 44(2), 267–284 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Meskhi, A.: Measure of non-compactness for integral operators in weighted Lebesgue spaces. Nova Science Publishers, New York (2009)zbMATHGoogle Scholar
  26. 26.
    Muckenhoupt, B.: Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Math. vol. 1034, Berlin (1983)Google Scholar
  28. 28.
    Musielak, J., Orlicz, W.: On modular spaces. Studia Math. 18, 49–65 (1959)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Nakano, M.: Topology of linear topological spaces. Moruzen Co. Ltd, Tokyo (1981)Google Scholar
  30. 30.
    Ružička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics, Vol. 1748, Springer, Berlin (2000)Google Scholar
  31. 31.
    Samko, S.: Convolution type operators in \(L^{p(x)}\). Integr. Transf. Spec. Funct. 7(1–2), 123–144 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Samko, S.: Convolution type operators in \(L^{p(x)}(R^n)\). Integr. Transf. Spec. Funct. 7(3–4), 261–284 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sharapudinov, I.I.: The topology of the space \({\cal L}^{p(t)}([0,\,1])\). Mat. Zametki. 26(4), 613–632 (1979). (Russian)MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Vakhtang Kokilashvili
    • 1
    • 2
  • Alexander Meskhi
    • 1
    • 3
  • Muhammad Asad Zaighum
    • 4
    Email author
  1. 1.Department of Mathematical Analysis, A. Razmadze Mathematical InstituteI. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.International Black Sea UniversityTbilisiGeorgia
  3. 3.Department of MathematicsFaculty of Informatics and Control Systems, Georgian Technical UniversityTbilisiGeorgia
  4. 4.Abdus Salam School of Mathematical SciencesGC University68-B New Muslim TownPakistan

Personalised recommendations