, Volume 17, Issue 3, pp 911–933 | Cite as

Reflexive cones

  • E. Casini
  • E. Miglierina
  • I. A. Polyrakis
  • F. Xanthos


Reflexive cones in Banach spaces are cones with weakly compact intersection with the unit ball. In this paper we study the structure of this class of cones. We investigate the relations between the notion of reflexive cones and the properties of their bases. This allows us to prove a characterization of reflexive cones in term of the absence of a subcone isomorphic to the positive cone of \(\ell _{1}\). Moreover, the properties of some specific classes of reflexive cones are investigated. Namely, we consider the reflexive cones such that the intersection with the unit ball is norm compact, those generated by a Schauder basis and the reflexive cones regarded as ordering cones in Banach spaces. Finally, it is worth to point out that a characterization of reflexive spaces and also of the spaces with the Schur property by the properties of reflexive cones is given.


Cones Base for a cone Vector lattices Ordered Banach spaces Geometry of cones Weakly compact sets Reflexivity Positive Schauder bases 

Mathematics Subject Classification (2010)

46B10 46B20 46B40 46B42 


  1. 1.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 57, Springer, New York (1971)Google Scholar
  2. 2.
    Aliprantis, C.D., Brown, D.J., Burkinshaw, O.: Existence and Optimality of Competitive Equilibria. Springer, New York (1990)Google Scholar
  3. 3.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Pure and Applied Mathematics, vol. 119. Academic Press, Orlando (1985)Google Scholar
  4. 4.
    Aliprantis, C.D., Cornet, B., Tourky, R.: Economic equilibrium: optimality and price decentralization. Special issue of the mathematical economics. Positivity 6, 205–241 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aliprantis, C.D., Tourky, R.: Cones and duality. Graduate Studies in Mathematics, vol. 84. American Mathematical Society, Providence (2007)Google Scholar
  6. 6.
    Casini, E., Miglierina, E.: Cones with bounded and unbounded bases and reflexivity. Nonlinear Anal. 72, 2356–2366 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Diestel, J.: Sequences and series in Banach spaces. Graduate Texts in Mathematics, vol. 92. Springer, New York (1984)CrossRefGoogle Scholar
  8. 8.
    Fetter, H., Gamboa de Buen, B.: The James Forest, London Mathematical Society Lecture Note Series, vol. 236. Cambridge University Press, Cambridge (1997)Google Scholar
  9. 9.
    Göpfert, A., Riahi, H., Tammer, C., Zǎlinescu, C.: Variational Methods in Partially Ordered Spaces, CMS Books Math., vol. 17, Springer, New York (2003)Google Scholar
  10. 10.
    Guerre-Delabrière, S.: Classical sequences in Banach spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 166, Marcel Dekker, Inc., New York (1992)Google Scholar
  11. 11.
    James, R.C.: Bases and reflexivity of Banach spaces. Ann. Math. 52, 518–527 (1950)MATHCrossRefGoogle Scholar
  12. 12.
    Jameson, G.: Ordered Linear Spaces. Lecture Notes in Mathematics, vol. 141. Springer, New York (1970)Google Scholar
  13. 13.
    Klee, V.L.: Separation properties of convex cones. Proc. Am. Math. Soc. 6, 313–318 (1955)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Krasnosel’skij, M.A., Lifshits, J.A., Sobolev, A.V.: Positive Linear Systems—The Method of Positive Operators. Heldermann Verlag, Berlin (1989)Google Scholar
  15. 15.
    Krein, M.G.: On minimal decomposition of functionals in positive parts. Dokl. Akad. Nauk SSSR 28(1), 18–22 (1940)MathSciNetGoogle Scholar
  16. 16.
    Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183, Springer, New York (1998)Google Scholar
  17. 17.
    Polyrakis, I.A.: Cones locally isomorphic to the positive cone of \(\ell _{1}({\Gamma })\). Linear Algebra Appl. 84, 323–334 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Polyrakis, I.A.: Cones and geometry of Banach spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52, 193–211 (2004)MathSciNetMATHGoogle Scholar
  19. 19.
    Polyrakis, I.A.: Demand functions and reflexivity. J. Math. Anal. Appl. 338, 695–704 (2008)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Polyrakis, I.A., Xanthos, F.: Cone characterization of Grothendieck spaces and Banach spaces containing \(c_{0}\). Positivity 15, 677–693 (2011)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Rubinov, A.M.: Infite-dimensional production models. Sibirskij Mat. J. 10(5), 1375–1386 (1969)MathSciNetMATHGoogle Scholar
  22. 22.
    Singer, I.: Bases in Banach Spaces I. Springer, Heidelberg (1970)MATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • E. Casini
    • 1
  • E. Miglierina
    • 2
  • I. A. Polyrakis
    • 3
  • F. Xanthos
    • 3
  1. 1.Dipartimento di Scienza e Alta TecnologiaUniversità dell’InsubriaComoItaly
  2. 2.Dipartimento di Discipline Matematiche, Finanza Matematica ed EconometriaUniversità Cattolica del Sacro CuoreMilanItaly
  3. 3.Department of MathematicsNational Technical University of AthensAthensGreece

Personalised recommendations