Skip to main content

Quantum systems and representation theorem


In this paper we investigate quantum systems which are locally convex versions of abstract operator systems. Our approach is based on the duality theory for unital quantum cones. We prove the unital bipolar theorem and provide a representation theorem for a quantum system being represented as a quantum \(L^{\infty }\)-system.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bourbaki, N.: Elements of Mathematics. General Topology, chap. 1–4. Springer, Berlin (1989)

  2. 2.

    Choi, M.D., Effros, E.G.: Injectivity and operator spaces. J. Funct. Anal. 24, 156–209 (1977)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Dosiev, A.A.: Local operator spaces, unbounded operators and multinormed \(C^{\ast }\)-algebras. J. Funct. Anal. 255, 1724–1760 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Dosiev, A.A.: Quantized moment problem. Comptes Rendus Math. 344(1), 627–630 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Dosi, A.A.: Local operator algebras, fractional positivity and quantum moment problem. Trans. AMS 363(2), 801–856 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Dosi, A.A.: Quantum duality, unbounded operators and inductive limits. J. Math. Phys. 51(6), 1–43 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dosi, A.A.: Noncommutative Mackey theorem. Int. J. Math. 22(3), 535–544 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Dosi, A.A.: Bipolar theorem for quantum cones. Funct. Anal. Appl. 46(3), 228–231 (2012)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dosi, A.A.: Quantum cones and their duality. Preprint

  10. 10.

    Effros, E.G., Ruan, Z.-J.: Operator Spaces. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  11. 11.

    Effros, E.G., Webster, C.: Operator Analogues of Locally Convex Spaces. Operator Algebras and Applications (Samos 1996) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 495). Kluwer, Dordrecht (1997)

  12. 12.

    Effros, E.G., Winkler, S.: Matrix convexity: operator analogues of the bipolar and Hanh–Banach theorems. J. Funct. Anal. 144, 117–152 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Helemskii, A.Ya.: Quantum Functional Analysis. MCCME, Moscow (2009)

  14. 14.

    Kutateladze, S.S.: Fundamentals of Functional Analysis, vol. 12. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  15. 15.

    Paulsen, V.: Completely bounded maps and operator algebras. In: Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

  16. 16.

    Pisier, G.: Introduction to Operator Space Theory. Cambridge University Press, London (2003)

    MATH  Google Scholar 

  17. 17.

    Schaefer, H.: Topological Vector Spaces. Springer, Berlin (1970)

    Google Scholar 

  18. 18.

    Webster, C.: Local operator spaces and applications. Ph.D. University of California, Los Angeles (1997)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anar Dosi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dosi, A. Quantum systems and representation theorem. Positivity 17, 841–861 (2013).

Download citation


  • Quantum cone
  • Multinormed \(W^{*}\)-algebra
  • Quantum system
  • Quantum order

Mathematics Subject Classification (1991)

  • Primary 46K10
  • Secondary 47L25
  • 47L60