Skip to main content

A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications

Abstract

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a \({\overline{\gamma}}\)-strongly monotone and L-Lipschitzian continuous operator with \({\overline{\gamma} >0 }\) and L > 0. Take \({\mu, \gamma \in \mathbb R}\) as follows:

$${0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma}-\frac{L^2 \mu}{2}}{k}.}$$

In this paper, under the assumption \({(A+B)^{-1}0 \cap F^{-1}0 \neq \emptyset}\), we prove a strong convergence theorem for finding a point \({z_0\in (A+B)^{-1}0\cap F^{-1}0}\) which is a unique solution of the hierarchical variational inequality

$${\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q\in (A+B)^{-1}0 \cap F^{-1}0.}$$

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.

This is a preview of subscription content, access via your institution.

References

  1. Aoyama K., Kimura Y., Takahashi W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395–409 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 8, 471–489 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Browder F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 100, 201–225 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Browder F.E., Petryshyn W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Eshita K., Takahashi W.: Approximating zero points of accretive operators in general anach spaces. JP J. Fixed Point Theory Appl. 2, 105–116 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Halpern B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  10. Liu Y.: A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces. Nonlinear Appl. 71, 4852–4861 (2009)

    Article  MATH  Google Scholar 

  11. Marino G., Xu H.-K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marino G., Xu H.-K: Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moudafi A.: Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moudafi A.: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear Convex Anal. 9, 37–43 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Nadezhkina N., Takahashi W.: Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rockafellar R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    MathSciNet  MATH  Google Scholar 

  17. Takahashi S., Takahashi W.: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Takahashi S., Takahashi W., Toyoda M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takahashi W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  20. Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000) (Japanese)

  21. Takahashi W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)

    MATH  Google Scholar 

  22. Takahashi, W.: Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications (to appear)

  23. Takahashi W., Toyoda M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tian M.: A general iterative algorithm for nonexpansive mappings in Hilbert spaces. Nonlinear Anal. 73, 689–694 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wittmann R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou H.: Convergence theorems of fixed points fot k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69, 456–462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Jiu Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, LJ., Takahashi, W. A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications. Positivity 16, 429–453 (2012). https://doi.org/10.1007/s11117-012-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-012-0161-0

Keywords

  • Equilibrium problem
  • Fixed point
  • Inverse-strongly monotone mapping
  • Hierarchical variational inequality problems
  • Iteration procedure
  • Maximal monotone operator
  • Resolvent
  • Strict pseudo-contraction

Mathematics Subject Classification (2000)

  • 47H05
  • 47H10
  • 58E35