Skip to main content
Log in

Optimal estimates for harmonic functions in the unit ball

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We find the sharp constants C p and the sharp functions C p  = C p (x) in the inequality

$$ |u(x)|\leq \frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}} \|u\|_{h^{p}(B^{n})}, u\in h^{p}(B^{n}), x\in B^{n}, $$

in terms of Gauss hypergeometric and Euler functions. This extends and improves some results of Axler et al. (Harmonic function theory, New York, 1992), where they obtained similar results which are sharp only in the cases p = 2 and p = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors, L.: Möbius transformations in several dimensions. Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn. pp. ii+150 (1981)

  2. Axler S., Bourdon P., Ramey W.: Harmonic function theory. Springer, New York (1992)

    MATH  Google Scholar 

  3. Colonna F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38(4), 829–840 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Khavinson D.: An extremal problem for harmonic functions in the ball. Canad. Math. Bull. 35, 218–220 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kalaj, D., Markovic, M.: Optimal estimates for the gradient of harmonic functions in the unit disk. Complex Anal. Oper. Theory. (2011). doi:10.1007/s11785-011-0187-5

  6. Kalaj, D., Vuorinen, M.: On harmonic functions and the Schwarz lemma. Proc. Amer. Math. Soc. (2011). doi:10.1090/S0002-9939-2011-10914-6

  7. Kresin, G., Maz’ya, V.: Sharp pointwise estimates for directional derivatives of harmonic functions in a multidimensional ball. J. Math. Sci. 169(2) (2010)

  8. Macintyre A.J., Rogosinski W.W.: Extremum problems in the theory of analytic functions. Acta Math. 82, 275–325 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pavlović, M.: Introduction to function spaces on the disk. 20. Matematički Institut SANU, Belgrade. pp. vi+184 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaj, D., Marković, M. Optimal estimates for harmonic functions in the unit ball. Positivity 16, 771–782 (2012). https://doi.org/10.1007/s11117-011-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-011-0145-5

Keywords

Mathematics Subject Classification (2000)

Navigation