Skip to main content
Log in

The irreducibility in ordered Banach algebras

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let A be an ordered Banach algebra. Put

$$\mathbf{OI}(A)=\{b\in A: 0 \le b\le e, b^2 = b\},$$

where e is a unit of A. An element z ≥ 0 is said to be order continuous if \({b_\alpha\downarrow 0}\) implies \({b_\alpha z \downarrow 0}\) and \({zb_\alpha\downarrow 0}\) for any \({b_\alpha \in \mathbf{OI}(A)}\) . It is shown that if E is a Dedekind complete Banach lattice then the set of all order continuous elements in L(E) coincides with the set of all positive order continuous operators on E. An algebra A is said to have a (strongly) disjunctive product if for any order continuous x and y in A(x, y ≥ 0) with xy = 0 there exists \({b \in \mathbf{OI}(A)}\) such that xb = (eb)y = 0. We show that the algebra L(E) has the strongly disjunctive product iff E has order continuous norm. An element \({z\in A}\) is said to be irreducible if for every \({b \in \mathbf{OI}(A)}\) the relation (eb)zb = 0 implies either b = 0 or b = e. We investigate spectral properties of irreducible elements in algebras with a disjunctive product. The spectral radius r(z) is called an f-pole of the resolvent R(·, z) if 0 ≤ xz implies r(x) ≤ r(z) and if r(x) = r(z) then r(z) is a pole of R(·, x). We show that under some natural assumptions on the Banach lattice E, if \({0\le T \in L(E)}\) then r(T) is an f-pole of R(·,T) iff r(T) is a finite-rank pole of R(·, T). We also present a theorem about the Frobenius normal form of z when r(z) is an f-pole of R(·, z). Some applications to the spectral theory of irreducible operators and the general spectral theory of positive elements are provided. In particular, we show that under some conditions 0 ≤ x < z implies r(x) < r(z).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. In: Graduate Studies in Mathematics, vol. 50 (2002)

  2. Abramovich Y.A., Sirotkin G.: On order convergence of nets. Positivity 9(3), 287–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aiena P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  4. Alekhno, E.A.: Spectral properties of band irreducible operators. In: Proceedings Positivity IV—Theory and Applications, Dresden, Germany, pp. 5–14 (2006)

  5. Alekhno E.A.: Some properties of essential spectra of a positive operator. Positivity 11(3), 375–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alekhno E.A.: Some properties of essential spectra of a positive operator, II. Positivity 13(1), 3–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alekhno E.A.: The lower Weyl spectrum of a positive operator. Integr. Equ. Oper. Theory 67(3), 301–326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, New York (1985)

    MATH  Google Scholar 

  9. Aliprantis, C.D., Tourky, R.: Cones and duality. In: Graduate Studies in Mathematics, vol. 84 (2007)

  10. Burger I., Grobler J.J.: Spectral properties of positive elements in Banach lattice algebras. Quaest. Math. 18(1–3), 261–270 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caselles V.: On the peripheral spectrum of positive operators. Isr. J. Math. 58(2), 144–160 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grobler, J.J.: Spectral theory in Banach lattices. In: Operator Theory: Advances and Applications, vol. 75, pp. 133–172 (1995)

  13. Grobler J.J., Reinecke C.J.: On principal T-bands in a Banach lattice. Integr. Equ. Oper. Theory 28(4), 444–465 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jang-Lewis R.-J., Victory H.D.: On the ideal structure of positive, eventually compact linear operators on Banach lattices. Pac. J. Math. 157(1), 57–85 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Kitover A.K., Wickstead A.W.: Operator norm limits of order continuous operators. Positivity 9(2), 341–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasnosel’skij, M.A., Lifshits, Je.A., Sobolev, A.V.: Positive Linear Systems: The Method of Positive Operators. Heldermann (1989)

  17. Mouton S., Raubenheimer H.: More spectral theory in ordered Banach algebras. Positivity 1(4), 305–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raubenheimer H., Rode S.: Cones in Banach algebras. Indag. Math. N.S. 7(4), 489–502 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor A. Alekhno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekhno, E.A. The irreducibility in ordered Banach algebras. Positivity 16, 143–176 (2012). https://doi.org/10.1007/s11117-011-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-011-0117-9

Keywords

Mathematics Subject Classification (2000)

Navigation