, Volume 15, Issue 4, pp 639–659 | Cite as

Spectrum of weighted composition operators: part 1. Weighted composition operators on C(K) and uniform algebras

  • A. K. KitoverEmail author


The paper contains a complete description of spectrum of disjointness preserving operators on C(K). As an application we fully describe spectrum of weighted automorphisms of unital uniform algebras.


Disjointness preserving operators Spectrum 

Mathematics Subject Classification (2000)

Primary 47B33 Secondary 47B48 46B60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich Y.A.: Multiplicative representation of operators preserving disjointness. Netherl. Acad. Wetensch. Proc. Ser. A 86, 265–279 (1983)MathSciNetGoogle Scholar
  2. 2.
    Abramovich, Y.A., Arenson, E.L., Kitover, A.K.: Banach C(K)-modules and operators preserving disjointness. In: Pitman Research Notes in Mathematical Series, p. 277 (1992)Google Scholar
  3. 3.
    Abramovich Y.A., Kitover A.K.: Inverses of disjointness preserving operators. Memoirs AMS 143, 679 (2000)MathSciNetGoogle Scholar
  4. 4.
    Antonevic A.B.: Operators with shift generated by the action of a compact Lie group (Russian). Sibirsk Mat. Zh 20(3), 467–478 (1979)MathSciNetGoogle Scholar
  5. 5.
    Arendt W.: Spectral properties of Lamperti operators. Indiana Univ. Math. J. 32(2), 199–215Google Scholar
  6. 6.
    Arenson E.L., Kitover A.K.: Compact disjointness preserving operators. Funct. Anal. Appl. 26(3), 55–57 (1992)MathSciNetGoogle Scholar
  7. 7.
    Dunford N., Schwartz J.T.: Linear Operators, Part I, General Theory. Interscience Publisher, New York (1958)Google Scholar
  8. 8.
    Gamelin T.W.: Uniform Algebras. Prentice Hall, New Jersey (1969)zbMATHGoogle Scholar
  9. 9.
    Kamowitz H.: Compact weighted endomorphisms of C(X). Proc. Amer. Math. Soc. 83(3), 517–521 (1981)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kamowitz H.: The spectra of endomorphisms of disk algebra. Pacific J. Math. 6(2), 433–440 (1973)Google Scholar
  11. 11.
    Kitover A.K.: The spectrum of automorphisms with weight, and the Kamowitz-Scheinberg theorem (Russian). Funktsional Anal. i Prilozhen 13(1), 70–71 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kitover A.K.: Spectral properties of weighted automorphisms in uniform algebras (Russian). Zapiski Nauchnich Seminarov LOMI 92, 288–293 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kitover A.K.: Spectral properties of weighted homomorphisms of algebras of continuous functions and their applications (Russian). Zapiski Nauchnich seminarov LOMI 107, 89–103 (1992)MathSciNetGoogle Scholar
  14. 14.
    Meyer-Nieberg P.: Banach Lattices. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  15. 15.
    Wickstead A.W.: Isolated points of the approximate point spectrum of certain lattice homomorphisms on C 0(X). Quaestiones Math. 3, 249–279 (1979)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Community College of PhiladelphiaPhiladelphiaUSA

Personalised recommendations