, Volume 15, Issue 4, pp 677–693 | Cite as

Cone characterization of Grothendieck spaces and Banach spaces containing c 0

  • Ioannis A. PolyrakisEmail author
  • Foivos Xanthos


In this article we study the embeddability of cones in a Banach space X. First we prove that c 0 is embeddable in X if and only if its positive cone \({c_0^+}\) is embeddable in X and we study some properties of Banach spaces containing c 0 in the light of this result. So, unlike with the positive cone of 1 which is embeddable in any non-reflexive space, \({c_0^+}\) has the same behavior as the whole space c 0. In the second part of this article we give a characterization of Grothendieck spaces X according to the geometry of cones of X*. By these results we give a partial positive answer to a problem of J.H. Qiu concerning the geometry of cones.


Cones Bases for cones Conic isomorphisms Grothendieck spaces \({c_0^+}\) \({\ell_1^+}\) 

Mathematics Subject Classification (2000)

46B03 46B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albanese A.A., Bonet J., Ricker W.J.: Grothendieck spaces with the Dunford-Pettis property. Positivity 14(1), 145–164 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aliprantis, C.D., Burkinshaw, O.: Positive operators. In: Pure and Applied Mathematics, vol. 119. Academic Press, New York (2006)Google Scholar
  3. 3.
    Aliprantis, C.D., Tourky, R.: Cones and duality. In: Graduate Studies in Mathematics, vol. 84. AMS, Providence (2007)Google Scholar
  4. 4.
    Bessaga C., Pelczynski A.: On bases and unconditional convergence of series in Banach spaces. Stud. Math. 17, 151–164 (1958)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Casini E., Miglierina E.: Cones with bounded and unbounded bases and reflexivity. Nonlinear Anal. 72, 2356–2366 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Diestel, J., Uhl, J.J.: Vector Measures. Amer. Math. Society, Providence (1977)Google Scholar
  7. 7.
    Grothendieck A.: Sur les applications lineaires faiblement compactes d’espaces du type C(K). Can. J. Math. 5, 129–173 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    James R.C.: Bases and reflexivity of Banach spaces. Ann. Math. 52, 518–527 (1950)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jameson, G.J.O.: Ordered linear spaces. In: Lecture Notes in Mathematics, vol. 142. Springer-Verlag, Heidelberg (1970)Google Scholar
  10. 10.
    Ji D., Craddock M., Bu Q.: Reflexivity and the Grothendieck property for positive tensor products in Banach lattices-I. Positivity 14(1), 59–68 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Johnson W.B., Rosenthal H.P.: On w*-basic sequence and their applications to the study of Banach spaces. Stud. Math. 43, 77–92 (1972)MathSciNetGoogle Scholar
  12. 12.
    Mil’man V.D.: Geometric theory of Banach spaces—I. Russ. Math. Surv. 05, 111–170 (1970)CrossRefGoogle Scholar
  13. 13.
    Pelczynski A.: A note on the paper of I. Singer: Basic sequences and reflexivity of Banach spaces. Stud. Math. 21, 371–374 (1962)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Philips R.S.: On linear transformations. Trans. Am. Math. Soc. 48, 516–541 (1940)CrossRefGoogle Scholar
  15. 15.
    Polyrakis I.A.: Strongly exposed points and a characterization of 1(Γ) by the Schur property. Proc. Edinb. Math. Soc. 30, 397–400 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Polyrakis I.A.: Demand functions and reflexivity. J. Math. Anal. Appl. 338, 695–704 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Qiu J.H.: A cone characterization of reflexive Banach spaces. J. Math. Anal. Appl. 256, 39–44 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rosenthal H.P.: A characterization of Banach spaces containing 1. Proc. Natl. Acad. Sci. USA 71, 2411–2413 (1974)zbMATHCrossRefGoogle Scholar
  19. 19.
    Rosenthal H.P.: A characterization of Banach spaces containing c 0. J. Am. Math. Soc. 7, 707–748 (1994)zbMATHGoogle Scholar
  20. 20.
    Singer I.: Basic sequences and reflexivity of Banach spaces. Stud. Math. 21, 351–369 (1962)zbMATHGoogle Scholar
  21. 21.
    Singer I.: Bases in Banach Spaces—I. Springer-Verlag, Heidelberg (1970)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece

Personalised recommendations