, Volume 15, Issue 4, pp 595–616 | Cite as

Domination problems for strictly singular operators and other related classes

  • Julio FloresEmail author
  • Francisco L. Hernández
  • Pedro Tradacete


We survey recent results on domination properties of strictly singular operators and related operator ideals, as well as Banach–Saks operators, Narrow operators and p-summing operators.


Banach lattice Positive operators Strictly singular operator Narrow operator Banach–Saks operator p-Summing operator 

Mathematics Subject Classification (2000)

46B42 47B65 47B10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich Y.A.: Weakly compact sets in topological K-spaces. Teor. Funktsii Funktsional Anal. i Prilozhen 15, 27–35 (1972)MathSciNetGoogle Scholar
  2. 2.
    Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics, 50. American Mathematical Society, Providence (2002)Google Scholar
  3. 3.
    Abramovich Y.A., Aliprantis C.D.: Positive operators. In: Johnson, W., Lindenstrauss, J. (eds) Handbook of the Geometry of Banach spaces, vol. I, Elsevier, Amsterdam (2001)Google Scholar
  4. 4.
    Aliprantis C.D., Burkinshaw O.: Positive compact operators on Banach lattices. Math. Z. 174, 289–298 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aliprantis C.D., Burkinshaw O.: On weakly compact operators on Banach lattices. Proc. Am. Math. Soc. 83, 573–578 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aliprantis C.D., Burkinshaw O.: Dunford–Pettis operators on Banach lattices. Trans. Am. Math. Soc. 274, 227–238 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Aliprantis C.D., Burkinshaw O.: Positive Operators. Springer, Berlin (2006)zbMATHGoogle Scholar
  8. 8.
    Aqzzouz B., Nouira R., Zraula L.: Compactness properties of operators dominated by AM-compact operators. Proc. Am. Math. Soc. 135, 1151–1157 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Baernstein A.: On reflexivity and summability. Studia Math. 42, 91–94 (1972)MathSciNetGoogle Scholar
  10. 10.
    Beauzamy B.: Propriété de Banach–Saks. Studia Math. 66, 227–235 (1980)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bourgain J.: New classes of \({\mathcal{L}_p}\)-spaces. Lecture Notes in Math., vol. 889. Springer, Berlin (1981)Google Scholar
  12. 12.
    Caselles V.: On the peripheral spectrum of positive operators. Israel J. Math. 58, 144–160 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Chen, Z.: Weak sequential precompactness in Banach lattices. Chinese Ann. Math. Ser. A 20, no. 5, 567–574 (1999); translation in Chinese J. Contemp. Math. 20(4), 477–486 (1999)Google Scholar
  14. 14.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43 (1995)Google Scholar
  15. 15.
    Dodds P.G., Fremlin D.H.: Compact operators in Banach lattices. Israel J. Math. 34, 287–320 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Enflo P., Starbird T.W.: Subspaces of L 1 containing L 1. Studia Math. 65(2), 203–225 (1979)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Flores J., Hernández F.L.: Domination by positive disjointly strictly singular operators. Proc. Am. Math. Soc. 129, 1979–1986 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Flores J., Hernández F.L.: Domination by positive strictly singular operators. J. Lond. Math. Soc. 66, 433–452 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Flores J., Hernández F.L., Tradacete P.: Powers of operators dominated by strictly singular operators. Q. J. Math. Oxford 59, 321–334 (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Flores J., Hernández F.L., Kalton N., Tradacete P.: Characterizations of strictly singular operators on Banach lattices. J. Lond. Math. Soc. 79, 612–630 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Flores, J., Hernández, F.L., Raynaud, Y.: Super strictly singular and cosingular operators and related classes. J. Operator Theory (in press)Google Scholar
  22. 22.
    Flores J., Ruiz C.: Domination by positive narrow operators. Positivity 7, 303–321 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Flores J., Ruiz C.: Domination by positive Banach–Saks operators. Studia Math. 173, 185–192 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Flores J., Tradacete P.: Factorization and domination of positive Banach–Saks operators. Studia Math. 189, 91–101 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ghoussoub N., Johnson W.B.: Factoring operators through Banach lattices not containing C(0,1). Math. Z. 194, 153–171 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ghoussoub N., Rosenthal H.P.: Martingales G δ-embeddings and quotients of L 1. Math. Ann. 264(3), 321–332 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Hernández F.L., Novikov S., Semenov E.M.: Strictly singular embeddings between rearrangement invariant spaces. Positivity 7, 119–124 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Hernández F.L., Rodriguez-Salinas B.: On p complemented copies in Orlicz spaces II. Israel J. Math. 68, 27–55 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hernández F.L., Sánchez V.M., Semenov E.M.: Disjoint strict singularity of inclusions between rearrangement invariant spaces. Studia Math. 144, 209–226 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hernández F.L., Sánchez V.M., Semenov E.M.: Strictly singular inclusions into L 1 + L . Math. Z. 258, 87–106 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Johnson, W.B., Maurey, B., Schechtman, G., Tzafriri, L.: Symmetric structures in Banach spaces. Memoirs Am. Math. Soc. 19 (1979)Google Scholar
  32. 32.
    Kadets V.M., Shvidkoy R.V., Werner D.: Narrow operators and rich subspaces of Banach spaces with the Daugavet property. Studia Math. 147, 269–298 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kalton N., Saab P.: Ideal properties of regular operators between Banach lattices. Illinois J. Math 29, 382–400 (1985)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Labuschagne C.C.: A Dodds-Fremlin property for Asplund and Radon–Nikodym operators. Positivity 10, 391–407 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I: Sequence Spaces. Springer, Berlin (1977)zbMATHGoogle Scholar
  36. 36.
    Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II: Function Spaces. Springer, Berlin (1979)zbMATHGoogle Scholar
  37. 37.
    Maslyuchenko O.V., Mykhaylyuk V.V., Popov M.M.: A lattice approach to narrow operators. Positivity 13, 459–495 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Meyer-Nieberg P.: Banach Lattices. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  39. 39.
    Novikov S.: Singularities of embedding operators between symmetric function spaces on [0,1]. Math. Notes 62, 457–468 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    de Pagter B.: The components of a positive operator. Indag. Math. 45, 229–241 (1983)zbMATHGoogle Scholar
  41. 41.
    de Pagter B., Schep A.: Measures of noncompactness of operators in Banach lattices. J. Funct. Anal. 78, 31–55 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Palazuelos, C., Sánchez-Pérez, E.A., Tradacete, P.: Maurey-Rosenthal factorization for p-summing operators and Dodds-Fremlin domination (in press)Google Scholar
  43. 43.
    Pelczynski A.: On strictly singular and strictly cosingular operators I, II. Bull. Acad. Polon. Scien. 13, 31–41 (1965)MathSciNetGoogle Scholar
  44. 44.
    Pitt L.: A compactness condition for linear operators on function spaces. J. Operator Theory 1, 49–54 (1979)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Plichko, A.: Superstrictly singular and superstrictly cosingular operators. Fuct. Anal. Appl., North Holland Math. Stu. vol. 197, Elsevier, Amsterdam, pp. 239–255 (2004)Google Scholar
  46. 46.
    Plichko, A., Popov, M.: Symmetric function spaces on atomless probability spaces. Dissertationes Mathematicae 306 (1990)Google Scholar
  47. 47.
    Raubenheimer H.: On regular Riesz operators. Quaest. Math. 23, 179–186 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Rosenthal, H.P.: Some remarks concerning sign-embeddings. Sé  min. d’Analyse Fonct. Univ. Paris VII (1981–1982)Google Scholar
  49. 49.
    Rosenthal H.P.: Embeddings of L 1 in L 1. Contemp. Math. 26, 335–349 (1990)Google Scholar
  50. 50.
    Rudin W.: Functional Analysis. McGraw-Hill, New-York (1977)Google Scholar
  51. 51.
    Szlenk W.: Sur les suites faiblement convergentes dans l’espace l. Studia Math. 25, 337–341 (1965)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Weis L.: Banach lattices with the subsequence splitting property. Proc. Am. Math. Soc. 105, 87–96 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wickstead A.W.: Extremal structure of cones of operators. Q. J. Math. Oxford 32, 239–253 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Wickstead A.W.: Converses for the Dodds-Fremlin and Kalton-Saab Theorems. Math. Proc. Cam. Phil. Soc. 120, 175–179 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Wickstead A.W.: Positive compact operators on Banach lattices : some loose ends. Positivity 4, 2313–2325 (2000)Google Scholar
  56. 56.
    Wickstead, A.W.: Charalambos D. Aliprantis (1946–2009). Positivity (this volume)Google Scholar
  57. 57.
    Zaanen A.C.: Riesz spaces II. North-Holland Publishing Company, Amsterdam (1983)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Julio Flores
    • 1
    Email author
  • Francisco L. Hernández
    • 2
  • Pedro Tradacete
    • 3
  1. 1.Departamento de Matemática AplicadaEscet, Universidad Rey Juan CarlosMadridSpain
  2. 2.Departamento de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain
  3. 3.Departamento de Matemática Aplicada y AnálisisUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations