Skip to main content
Log in

Regular orbits and positive directions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let A be a bounded linear operator defined on a separable Banach space X. Then A is said to be supercyclic if there exists a vector xX (later called supercyclic for A), such that the projective orbit \(\{\lambda A^{n} x\,:\,n \in {\mathbb{N}},\,\lambda \in {\mathbb{C}}\}\) is dense in X. On the other hand, A is said to be positive supercyclic if for each supercyclic vector x, the positive projective orbit, \(\{rA^nx\,:\, r \in {\mathbb{R}}_{+},\,n \in {\mathbb{N}}\}\) is dense in X. Sometimes supercyclicity and positive supercyclicity are equivalent. The study of this relationship was initiated in [14] by F. León and V. Müller. In this paper we study positive supercyclicity for operators A of the form \(A=T \oplus \alpha 1_{{\mathbb{C}}}\), with \(\alpha \in {\mathbb{C}}{\setminus}\{0\}\), defined on \(X \oplus {\mathbb{C}}\). We will see that such a problem is related with the study of regular orbits. The notion of positive directions will be central throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.A. Shamim, Hypercyclic and cyclic vectors, J. Funct. Anal., 128 (1995), 374–383.

    Google Scholar 

  2. F. Bayart, E. Matheron, Hypercyclic operators failing the hypercyclicity criterion on classical banach spaces, J. Funct. Anal., 250 (2007), 426–441.

    Google Scholar 

  3. T. Bermúdez, A. Bonilla, A. Peris, \(\mathbb{C}\) -supercyclic versus \(\mathbb{R}^{+}\) -supercyclic operators, Arch. Math. (Basel), 79 (2002), 125–130.

    Google Scholar 

  4. J. Bès, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal., 167 (1999), 94–112.

  5. P.S. Bourdon, N.S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., 52 (2003), 811–819.

  6. M. De la Rosa, C. Read, A hypercyclic operator whose direct sum \(T \oplus T\) is not hypercyclic, J. Oper. Theor., (to appear).

  7. M. González, F. León-Saavedra, A. Montes-Rodríguez, Semi-Fredholm theory: hypercyclic and supercyclic subspaces, Proc. Lond. Math. Soc. 81(3) (2000), 169–189.

  8. S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Oper. Theor., 54 (2005), 147–168.

    Google Scholar 

  9. K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Am. Math. Soc., (N.S.), 36 (1999), 345–381.

  10. D.A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal., 99 (1991) 179–190.

    Google Scholar 

  11. H.M. Hilden, L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J., 23 (1973/1974), 557–565.

    Google Scholar 

  12. F. León-Saavedra, A. Piqueras-Lerena, Cyclic properties of Volterra operator II (Preprint).

  13. F. León-Saavedra, A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal., 148 (1997), 524–545.

    Google Scholar 

  14. F. León-Saavedra, V. Müller, Rotations of hypercyclic and supercyclic operators, Int. Equ. Oper. Theor. 50 (2004) 385–391.

  15. F. León-Saavedra, A. Piqueras-Lerena, Positivity in the theory of supercyclic operators, Pers. Oper. Theor. (Banach Center Publications) 75 (2004), 221–232.

  16. F. León-Saavedra, A. Piqueras-Lerena, On weak positive supercyclicity, Israel J. Math., 167 (2008), 303–313.

    Google Scholar 

  17. A. Montes-Rodríguez, H.N. Salas, Supercyclic subspaces: spectral theory and weighted shifts, Adv. Math., 163 (2001), 74–134.

    Google Scholar 

  18. A. Montes-Rodríguez, Héctor N. Salas, Supercyclic subspaces, Bull. Lond. Math. Soc., 35 (2003), 721–737.

  19. A. Peris, L. Saldivia, Syndetically hypercyclic operators, Int. Equs. Oper. Theor., 51 (2005), 275–281.

  20. T. van Ravenstein, The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Pilar Romero de la Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Pilar Romero de la Rosa, M. Regular orbits and positive directions. Positivity 13, 631–642 (2009). https://doi.org/10.1007/s11117-008-2295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-008-2295-7

Mathematics Subject Classification (2000).

Keywords.

Navigation