Skip to main content
Log in

Positivity and Convexity in Rings of Fractions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Given a commutative ring A equipped with a preordering A+ (in the most general sense, see below), we look for a fractional ring extension (= “ring of quotients” in the sense of Lambek et al. [L]) as big as possible such that A+ extends to a preordering R+ of R (i.e. with AR+  =  A+) in a natural way. We then ask for subextensions AB of AR such that A is convex in B with respect to B+ : =  BR+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad. 40 (1964), 801–806.

  • T. Akiba, Remarks on generalized rings of quotients, III. J. Math. Kyoto Univ. 9–2 (1969), 205–212.

  • F.W. Anderson, Lattice-ordered rings of quotients. Can. J. Math. 17 (1965), 434–448.

    Google Scholar 

  • D. Augustin, The membership problem for preorders – the one dimensional case. Manuscript in preparation.

  • E. Becker, Summen n-ter Potenzen in Körpern. J. Reine Angew. Math. 307/308 (1979), 8–30.

    Google Scholar 

  • E. Becker, D. Gondard, On rings admitting orderings and 2-primary chains of orderings of higher level, Manuscr. Math. 65 (1989), 62–63.

    Google Scholar 

  • R. Berr, Sums of mixed powers in fields and orderings of prescribed level. Math. Z. 210 (1992), 513–528.

    Google Scholar 

  • R. Berr, T. Wörmann, Positive polynomials and tame preorderings. Math. Z. 236 (2001), 813–840.

    Google Scholar 

  • J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Springer-Verlag (1998).

  • G.W. Brumfiel, Partially ordered rings and semi-algebraic geometry, London Math. Soc. Lecture Notes 37, Cambridge Univ. Press (1979).

  • N.J. Fine, L. Gillman, J. Lambek, Rings of Quotients of Rings of Functions. McGill University Press, Montreal, Quebec (1965).

  • L. Gillman, J. Jerison, Rings of Continuous Functions. Van Nostrand 1960. Reprint Springer (1976).

  • D.K. Harrison, Finite and infinite primes for rings and fields, Mem. Am. Math. Soc. 68 (1966).

  • D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (1888), 342–350; see Ges. Abh. 2, 154–161, Springer, Berlin, 1933, reprinted by Chelsea, New York, 1981.

  • M. Knebusch, C. Scheiderer, Einführung in die reelle Algebra, Vieweg (1989).

  • M. Knebusch, D. Zhang, Manis valuations and Prüfer extensions I, Lecture Notes Math. 1791, Springer (2002).

  • M. Knebusch, D. Zhang, Convexity, valuations, and Prüfer extensions in real algebra, Doc. Math. 10 (2005), 1–109 (electronic).

    Google Scholar 

  • J. Lambek, Lectures on Rings and Modules, Blaisdell, Toronto (1966).

  • S. Larson, Convexity conditions on f-rings, Can. J. Math. 38 (1986), 48–64.

    Google Scholar 

  • D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128.

  • G. Polya, Über positive Darstellungen von Polynomen, Vierteljschr. Naturforsch. Ges. Zürich 73 (1928), 141–145. Collected Papers, Vol. 2, pp. 309–313, MIT Press (1974).

  • V. Powers, B. Reznick, Polynomials that are positive on an interval, Trans. Am. Math. Soc. 352(10) (2000), 4677–4692.

    Google Scholar 

  • A. Prestel, C.N. Delzell, Positive Polynomials, Springer Verlag (2001).

  • A. Prestel, N. Schwartz, Model theory of real closed rings, Fields Inst. Commun. 32 (2002), 261–290.

  • B. Reznick, Uniform denominators in Hilbert’s seventeenth problem, Math. Z. 220 (1995), 75–98.

  • C. Scheiderer, Positivity and sums of squares: A guide to some recent results, Preprint 2003, available at www.ihp-raag.org/publications.

  • K. Schmüdgen, The K-moment problem for closed semialgebraic sets, J. Reine Angew. Math. 558 (2003), 225–234.

  • N. Schwartz, The basic theory of real closed spaces, Memoirs Am. Math. Soc. 397 (1989).

  • N. Schwartz, Real closed rings. In: S. Wolfenstein (ed) Algebra and order, Proc. First Internat. Symp. Ordered Algebraic Structures Luminy-Marseilles 1984, pp. 175–194, Copyright Helderman Verlag, Berlin (1986).

  • N. Schwartz, Rings of continuous functions as real closed rings. In: W.C. Holland, J. Martinez (eds) Ordered Algebraic Structures, pp. 277–313, Kluwer (1997).

  • N. Schwartz, Gabriel filters in real closed rings, Comment. Math. Helv. 72 (1997), 434–465.

  • M. Tressl, Super real closed rings, Preprint 2005.

  • Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1–18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Knebusch.

Additional information

Supported by DFG.

A short form of this article has been delivered at the conference Carthapos 2006 at Carthago (Tunisia).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knebusch, M. Positivity and Convexity in Rings of Fractions. Positivity 11, 639–686 (2007). https://doi.org/10.1007/s11117-007-2077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-007-2077-7

Mathematics Subject Classification (2000)

Keywords

Navigation